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Abstract
Quantum effects in weakly disordered systems are governed by the properties of
the elementary interaction between propagating particles and impurities. Long-
range mesoscopic effects due to multiple scattering are derived by iterating the
single scattering vertex, which has to be appropriately diagonalized. In the
present paper, we present a systematic and detailed diagonalization of the
diffuson and cooperon vertices responsible for weak localization effects. We
obtain general expressions for eigenvalues and projectors onto eigenmodes, for
any spin and arbitrary elementary interaction with impurities. This description
provides a common frame for a unified theory of mesoscopic spin physics for
electrons, photons and other quantum particles. We treat in detail the case of
spin-flip scattering of electrons by freely orientable magnetic impurities and
briefly review the case of photon scattering from degenerate dipole transitions
in cold atomic gases.

PACS numbers: 73.20.Fz, 03.65.Fd, 72.10.Fk

1. Introduction

The physics of multiple scattering is governed by the iteration of elementary scattering
events. The description of mesoscopic effects, due to phase-coherent multiple scattering
of waves, therefore requires the elementary interaction to be in a form which is suitable for the
iteration. The scattered particles in question may be electrons, photons, neutrons or cold
atoms; the scatterers may be point-like impurities, spin-flip impurities interacting with the
electron spin via an exchange interaction, spin–orbit impurities, atoms interacting with the
photons via the dipolar interaction or classical dielectric light scatterers [1], to name a few.

On a classical level, multiple scattering is described by a Boltzmann-type transport
equation, which in a microscopic description is generated by considering pairs of complex
conjugate amplitudes co-propagating along the same scattering path. In a diagrammatic
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representation, these amplitudes are depicted by the so-called ladder diagrams. The sum of
these ladder diagrams constitutes the ‘diffuson’ which, in the long-distance limit, describes a
diffusion process. Weak localization corrections to classical diffusive transport are described
by the ‘cooperon’, the sum of so-called maximally crossed diagrams made of amplitudes that
are counter-propagating along the same scattering path. If the wave scatters off structureless
point scatterers, the maximally crossed diagrams can be disentangled by returning one
amplitude and thus transform into a sum of ladder diagrams. Then, reciprocity [2] assures that
the quantum correction due to this interference is maximal.

In the presence of scatterers with internal degrees of freedom, multiple scattering contains
richer physics, since these internal degrees of freedom couple to the degrees of freedom of the
propagating wave. The two subsystems, propagating wave and impurities, become entangled,
and discarding all which-path information by tracing out the unobservable impurity degrees
of freedom leads to an effective dephasing of coherent effects for the observed wave. In
mesoscopic electronic samples, for example, the spin of a propagating electron couples to
the spin of magnetic impurities, and in light-scattering atomic clouds the polarization of
propagating photons interacts with the internal atomic angular momentum. In these cases, the
elementary scattering vertex in the diffuson series is a tensor with 4 spin indices, connecting
two incident spin states to two scattered spin states. A successful derivation of multiple
scattering properties then requires that this elementary vertex be iterated. This problem has
been studied and solved in several specific cases. For instance, in the case of spin–orbit
coupling and scattering by magnetic impurities, Hikami, Larkin and Nagaoka [3] showed
that the cooperon can be diagonalized in the singlet and triplet subspaces. Similar methods
were employed for calculating conductance fluctuations [4]. In the context of light scattering
by thermal atomic gases, the iteration structure of the photonic diffuson was completely
determined by Barrat, Omont and others [5–7]. For the study of phase-coherent effects in cold
atomic gases, the cooperon for the atom–photon problem was calculated exactly by two of
us [8]. Its diagonal properties were used to describe coherent backscattering by cold atomic
gases and weak localization phase coherence times [9]. In all these cases, the iteration of the
elementary vertex properties was done by hand, finding the appropriate diagonal tensors and
associated eigenvalues rather heuristically.

In the present contribution, we provide a thorough understanding of the diffuson and
cooperon vertex diagonalization, of the different projectors and eigenvalues involved, of their
spin and coupling dependence as well as of their precise relationships. In the next section,
we start by recalling the example of the spin-flip scattering of spin 1

2 particles. In section 3,
we present a general diagonalization scheme for arbitrary ladder and crossed vertices. We
derive in detail the isotropic projectors onto invariant subspaces for scalar vertices. Once the
algebraic structure has thus been laid, in section 4 we calculate the corresponding eigenvalues
from the microscopic scattering potential. Finally, we conclude this paper by indicating some
possible extensions of the work. The appendix contains a brief review of photon scattering
properties in the light of the present work.

2. A heuristic diagonalization of the electronic spin-flip vertex

2.1. Diffuson and cooperon

Let us first consider multiple scattering of a quantum particle by randomly distributed
impurities without internal structure [1]. The disorder-averaged probability of a wave
packet emanating at point r and time t = 0 with density matrix ρ0(r) to be detected at
point r′ and time t > 0 is given by P(r, r′, t) = 〈〈r′|U(t)ρ(r)U †(t)|r′〉〉av where 〈· · ·〉av
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(a) (b) (c)

Figure 1. Three equivalent representations of the cooperon interference at five scatterers: (a) real-
space representation of counter-propagating amplitudes; (b) momentum-space maximally crossed
diagram with retarded propagator (upper full line) and advanced propagator (lower dashed line)
connected by impurity scattering events (dotted lines) and (c) the same diagram with returned
advanced propagator line exhibiting the ladder structure.

signifies a trace over the impurity configurations. For a quasimonochromatic wave packet of
central energy ε and long evolution time, the Fourier transform of the detection probability
is P(r, r′, ω) = [2πρ(ε)]−1〈GR(r, r′, ε)GA(r, r′, ε − ω)〉av in terms of the retarded and
advanced Green functions GR,A(E) and the average density of states ρ(ε).

This average probability satisfies an integral equation of the Bethe–Salpeter type
generating a multiple scattering sequence. In weakly disordered samples, the interference
of amplitudes propagating along different scattering paths will be washed out by the disorder
average. Therefore, the dominant contribution will come from co-propagating amplitudes
along identical scattering paths, thus discarding interference effects and recovering a classical
propagation picture. This propagation is described by the so-called diffuson, the propagation
kernel of the multiple scattering sequences defined in operator form by D = L + LGD

where L describes the elementary scattering by a single impurity and the four-point operator
G = 〈GA〉av〈GR〉av is the intensity propagator (of Boltzmann–Drude type with factorized
averages) between scattering events. In diagrammatic representations, this series has a ladder
structure and can formally be summed as a geometric series, D = L/(1 − GL). Going to
the diffusion approximation (Kubo limit of large distances and long times) permits one to
derive the effective diffusion constant of this classical diffusion process as a function of the
microscopic parameters, in a spirit similar to the kinetic equation in the Boltzmann–Lorentz
model of classical particles colliding with fixed impurities. In the case of electrons, the Einstein
relation between the diffusion constant and the conductivity then allows one to recover the
classical Drude conductivity.

Quantum corrections generated by the interference of amplitudes propagating along
different scattering paths can be incorporated by considering more general scattering processes.
A particular interference that survives the disorder average is the weak localization correction
of the classical diffusion constant due to amplitudes counter-propagating along identical
scattering paths [10], depicted in figure 1(a). In a diagrammatic representation, this
interference is given by maximally crossed diagrams (figure 1(b)) that can be unfolded to
a ladder structure (figure 1(c)) and summed to C = X/(1 − GX) where X is the single
scattering vertex for the returned advanced amplitude line. For simple impurities without
internal structure, one has X = L. Weak localization then enhances the classical return
probability of a particle by a factor of 2 and reduces the diffusion constant. Experimentally,
this effect can be measured for instance in the electronic negative magnetoresistance where
an external magnetic field suppresses the weak localization corrections and thus leads to a
larger conductance. In optics, the interferential enhancement of backscattered intensity is
called coherent backscattering and has been observed in a large variety of samples. The case
of impurities with internal structure acting on the spin degrees of freedom of the propagating
particle is more involved as should become apparent in the following example of electronic
spin-flip scattering.
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2.2. Definition of the spin-flip vertex

We consider now a particle of spin S propagating in a disordered sample with spin J magnetic
impurities. The particle spin states are written as eigenstates |sα〉 of S2 and Sz. For electrons,
s = 1

2 and α = ± 1
2 . The spin operator then is S = σ/2 (in natural units h̄ = 1) where the

components of σ = (σ x, σ y, σ z) are the usual Pauli matrices. The interaction with a given
magnetic impurity is described by the Hermitian operator Vm = gJ · S with coupling strength
g. The Born scattering amplitude for the spin-flip process |sα〉 �→ |sγ 〉 is

〈sγ |Vm|sα〉 = gJ · 〈sγ |S|sα〉 = gJ · Sγα. (1)

The effective scattering intensity of this process is described by the four-point vertex (the
overline indicates complex conjugation)

Lαβ,γ δ = α——γ| || |β——δ
= 〈〈sγ |Vm|sα〉〈sδ|Vm|sβ〉〉av = |g|2J (J + 1)

3
Sγα · Sβδ (2)

where 〈· · ·〉av denotes a trace over the impurity configurations, here an isotropic average
〈JiJj 〉av = δij J (J + 1)/3 over all possible orientations of the freely orientable magnetic
impurity. This average is the fundamental reason for the non-deterministic dephasing of the
multiple scattering process. We choose to normalize the spin-flip scattering strength g such
that the intensity vertex is written as

Lαβ,γ δ = Sγα · Sβδ

s(s + 1)
. (3)

This normalization choice endows the vertex with the convenient trace-preserving property
Lαα,γ δ = δγ δ; here as in the following, summation over repeated spin indices is understood.

Weak localization corrections to transport are embodied in the so-called cooperon and
are generated by maximally crossed diagrams. These diagrams can be ‘unfolded’ to a ladder
structure such that the intensity vertex (3) is replaced by the crossed vertex

Xαβ,γ δ = Lαδ,γβ =
α γ

δβ
= 〈sγ sδ|X|sαsβ〉 = Sγα · Sδβ

s(s + 1)
. (4)

For reasons that will become clear later, the crossed vertex X is denoted by a roman letter,
whereas the vertex L is held in curly script.

2.3. Elementary diagonalization

The natural coupling scheme for the vertices (3) and (4) is the ‘vertical’ combination
(αγ ) ↔ (βδ) between the elementary scattering amplitudes. However, in multiple scattering
diagrams, the above intensity vertices have to be chained ‘horizontally’ in the direction
(αβ) ↔ (γ δ) according to the following product rule of four-point vertices:

(GL)αβ,γ δ = Lαβ,µνGµν,γ δ. (5)

In the product definition, the order of operators is inverted since operators are conventionally
applied to their arguments from the left, but their vertex symbols are usually added to a
diagram on the right. The rank-four tensor Gαβ,γ δ = 〈

GR
αγ

〉
av

〈
GA

βδ

〉
av describes the average

propagation between scattering events. By virtue of rotational invariance, the average
propagators 〈Gαγ 〉av = 〈G〉avδαγ are proportional to the identity in spin space such that
Gαβ,γ δ = 〈GR〉av〈GA〉avδαγ δβδ is proportional to the ‘horizontal’ identity. (Note that for
photons, however, transversality implies that Gαβ,γ δ is not proportional to the identity which
leads to the more complicated scenario described in the appendix, featuring nonetheless the
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general properties discussed in the present section.) But in order to calculate the summed
diffuson D = L/(11−GL) and the cooperon C = X/(11−GX), the vertices Lαβ,γ δ and Xαβ,γ δ

have to be diagonalized with respect to the horizontal direction (αβ) ↔ (γ δ). For electrons
with s = 1

2 , this amounts to diagonalizing 4 × 4 matrices [1]. It turns out that the diffuson and
cooperon vertices can be cast in the form

Lαβ,γ δ = λ0T (0)
αβ,γ δ + λ1T (1)

αβ,γ δ, (6)

Xαβ,γ δ = χ0T
(0)
αβ,γ δ + χ1T

(1)
αβ,γ δ. (7)

Here, the diffuson vertex tensors

T (0)
αβ,γ δ = 1

2δβαδγ δ, (8)

T (1)
αβ,γ δ = 1

2σβα · σγ δ = δγαδβδ − 1
2δβαδγ δ (9)

are orthogonal projectors with respect to the horizontal product rule (5):

T (K)
αβ,µνT

(K ′)
µν,γ δ = δKK ′T (K)

αβ,γ δ. (10)

Likewise, the cooperon vertex tensors

T
(0)
αβ,γ δ = 1

2 (δγαδδβ − δδαδγβ), (11)

T
(1)
αβ,γ δ = 1

2 (δγαδδβ + δδαδγβ) (12)

are orthogonal projectors such that T
(K)
αβ,µνT

(K ′)
µν,γ δ = δKK ′T

(K)
αβ,γ δ . Both sets of projectors sum up

to the identity δγαδβδ for the horizontal product rule (5). Obviously, the diffuson projectors
(8) and (9) are different from the cooperon projectors (11) and (12). This is in sharp contrast
to the case of photon scattering (s = 1) by atoms with degenerate dipole transitions, where
the same set of orthogonal projectors can be used for both vertex types [8] (see the appendix
for details).

In the diagonal decomposition (6), the eigenvalues of the diffuson vertex are found to
be λ0 = 1 (non-degenerate) and λ1 = − 1

3 (three-fold degenerate). The eigenvalues of the
normalized crossed vertex are χ0 = −1 (non-degenerate) and χ1 = 1

3 (three-fold degenerate).
It has been noted that the cooperon spin vertex eigenvalues χK correspond to the singlet channel
K = 0 and the triplet channel K = 1, respectively, which accounts for the degeneracies [3].
Remarkably, the eigenvalues λK and χK are equal in magnitude but opposite in sign, which is
not properly explained on this level of heuristic diagonalization.

Prompted by these observations, we wish to answer the following questions:

(i) Given diffuson and cooperon vertices for arbitrary spin s, which are the orthogonal
projectors that assure a least redundant diagonalization?

(ii) How do the diffuson and cooperon eigenvalues depend on the microscopic spin scattering
mechanism?

2.4. First answers

2.4.1. General idea. In essence, the intensity vertices map two incident spins s onto two final
spins. Furthermore, they are scalar objects since they are obtained by an isotropic average over
microscopic degrees of freedom. The invariance under rotations is then responsible for the
eigenvalue degeneracies. The key idea is to decompose the argument and image spaces into
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irreducible subspaces with respect to the rotation group. The relevant subspaces are labelled
by the effective recoupled spin K = 0, . . . , 2s. A generic scalar vertex A can only connect
irreducible subspaces with equal K, and its eigenvalues are degenerate in each subspace. In
the appropriate recoupled basis, a scalar vertex takes the diagonal form

A =




a0110 0 . . . 0
0 a1111 . . . 0
...

...
. . .

...

0 0 . . . a2s112s


 =

2s∑
K=0

aKT (K). (13)

The projectors T (K) are simply projectors onto the irreducible subspaces. Therefore, rotational
symmetry alone dictates that there are at most (2s+1) different eigenvalues, each (2K +1)-fold
degenerate. This decomposition is optimal if the scalarity is the only information available
and holds for arbitrary spin.

2.4.2. Recoupling schemes. Clearly, the natural coupling between spin indices in the ladder
and crossed vertices (2) and (4) is the ‘vertical’ coupling scheme (αγ ) ↔ (βδ) that is inherited
from the scattering amplitude (1). Unfortunately, this coupling is not suited for an iteration
with the product (5). For the diagonalization, we therefore have to recouple the spin indices
into the ‘horizontal’ coupling scheme (αβ) ↔ (γ δ) for the ladder vertex, and the ‘diagonal’
coupling scheme (αδ) ↔ (βδ) for the crossed vertex. Consequently, all vertex eigenvalues we
derive will feature 6j -symbols that describe the recoupling of 4 spins in angular momentum
theory.

By exchanging the indices δ ↔ β in the crossed vertex, we are actually able to recover
formally the ladder structure, but there is a price to be paid. Taking seriously the disposition
of kets and bras, we see that the two vertices have different rotational structure: the crossed
vertex defines a linear mapping between product states

X : |sα〉|sβ〉 �→ |sγ 〉|sδ〉,
whereas the diffuson vertex is a mapping not between states, but between operators:

L : |sα〉〈sβ| �→ |sγ 〉〈sδ|.
This difference, due to the exchange 〈sβ| ↔ |sδ〉 and subsequent relabelling β ↔ δ in the
unfolding procedure of the crossed to the ladder series, leads eventually to two distinct sets of
projectors. We will therefore diagonalize the diffuson vertex as a superoperator, but treat the
cooperon vertex as an ordinary operator.

2.4.3. Projectors. In section 3, we will explicitly construct the diffuson projectors onto
irreducible subspaces. For spin 1

2 , this reduces indeed to the electronic projectors (8) and (9).
The cooperon vertex projectors (11) and (12) will be shown to be given by

T
(0)
αβ,γ δ = − 1

2T
(0)

αδ,γβ + 1
2T

(1)
αδ,γβ, (14)

T
(1)
αβ,γ δ = 3

2T
(0)

αδ,γβ + 1
2T

(1)
αδ,γβ . (15)

This is in fact the spin 1
2 version of the more general relation

T
(K)
αβ,γ δ =

∑
K ′

Rs(K,K ′)T (K ′)
αδ,γβ (16)
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between the cooperon and diffuson projectors, valid for arbitrary spin, to be derived in
section 3.6. Here, our notation

Rs(K,K ′) = (2K + 1)

{
s s K

s s K ′

}
(17)

is a 6j -symbol from standard angular momentum theory [11, 12]. Thanks to the 6j -symbol
orthogonality [12, (35c)]5∑

K ′
Rs(K,K ′)Rs(K

′,K ′′) = δK,K ′′ , (18)

the inverse relation to (16) is equally simple:

T (K)
αβ,γ δ =

∑
K ′

Rs(K,K ′)T (K ′)
αδ,γβ . (19)

2.4.4. Eigenvalues. We will show in section 4 that the eigenvalues of the normalized spin-flip
vertices (3) and (4) are given by

λK = 1 − K(K + 1)

2s(s + 1)
= −χK. (20)

The eigenvalues for an arbitrary microscopic spin scattering potential will be derived below
in full generality. In all cases, the eigenvalues of a scalar scattering vertex are linked by the
recoupling relations

λK =
∑
K ′

Rs(K
′,K)χK ′ , χK =

∑
K ′′

Rs(K
′′,K)λK ′′ . (21)

These relations between eigenvalues take the form of a contravariant transformation of
coordinates associated with the respective covariant transformation (16) and (19) of the
projectors.

These results should motivate our readers to consider with interest the following, more
involved derivations. In section 3, we lay the algebraic foundations of the decomposition by
deriving the orthogonal projectors, before turning to the eigenvalues in section 4.

3. Diagonalization of intensity vertices

Let us now consider a general spin interaction defined by its matrix elements 〈sγ |V |sα〉 for
arbitrary spin s. The corresponding diffuson and cooperon vertices are given by

Lαβ,γ δ = 〈〈sγ |V |sα〉〈sβ|V †|sδ〉〉av, (22)

Xαβ,γ δ = Lαδ,γβ = 〈〈sγ |V |sα〉〈sδ|V †|sβ〉〉av. (23)

3.1. The diffuson vertex as a spin superoperator

Spin states |sα〉 are vectors in the Hilbert space Hs = C
ds with dimension ds = 2s + 1.

The diffuson vertex L is a linear mapping |sα〉〈sγ | �→ |sδ〉〈sβ| between spin operators. Its
argument space therefore is the space of linear operators acting on Hs , the so-called Liouville
space L(Hs) with dimension d2

s [13]. Any linear operator A ∈ L(Hs) is simply a ds × ds

5 Instead of compiling a large appendix, we will refer to standard definitions and sum rules by citing the exact
location in appendix C of Messiah’s book, e.g., his equation (35a) by writing [12, (35a)].
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matrix. The trace-preserving vertex L : L(Hs) → L(Hs) then is a superoperator (thus the
notation with a curly script), mapping a matrix A onto another matrix A′ = LA. Its action in
the basis of spin projectors {|sα〉〈sβ|} reads A′

γ δ = Lαβ,γ δAαβ in terms of the matrix elements

Lαβ,γ δ = tr{(|sδ〉〈sγ |)L(|sα〉〈sβ|)}. (24)

Here, tr{·} = ∑
α〈sα| · |sα〉 is the trace over Hs . In superoperator notation, the diffuson vertex

reads

L =
∑
αβγ δ

(|sγ 〉〈sδ|)Lαβ,γ δ tr {(|sβ〉〈sα|)·} . (25)

With this notation, the resemblance with the Liouvillian L = − i
h̄

[H, ·], the generator of time
evolution, becomes apparent. We define the trace of L as a linear operator in the Liouville
space as

TrL L =
∑
α,β

Lαβ,αβ . (26)

In the extensive literature on Liouville space formalism [14–17], one often views the spin
operators as vectors in L(Hs) and defines corresponding kets by |sβ〉〈sα| = |αβ〉〉. Using
this notation, the diffuson vertex matrix elements are given by Lαβ,γ δ = 〈〈γ δ|L|αβ〉〉, and
the superoperator takes the very simple form L = ∑

αβγ δ Lαβ,γ δ|γ δ〉〉〈〈αβ|. In this notation,
the parallel with the cooperon vertex operator (see (44) below) is especially clear. How-
ever, we deliberately choose to use the superoperator formulation in the following because
it allows us in section 3.3.2 to derive the ladder vertex projectors in terms of spin operators
(which is needed to get expression (9)). Moreover, to answer completely question (i) raised in
section 2.3, we have to explain the difference between the diffuson and cooperon eigenstruc-
tures rather than their similarity. This difference reflects the different behaviour under rotations
of spin states |sα〉 and their conjugates 〈sα| that are explicitly featured in the superoperator
notation (25).

3.2. Decomposition into irreducible superoperators

An incident state |sα〉 in scattering amplitudes like (1) is a spinor, i.e., a vector in Hs that
transforms under the irreducible representation D(s) of the rotation group SU(2): |sα〉 �→
U |sα〉 = ∑

µ |sµ〉〈sµ|U |sα〉 = ∑
µ Uµα|sµ〉 with an appropriate unitary and unimodular

matrix UU † = 11ds
, det U = +1. A final state 〈sγ |, however, transforms contragradiently [18],

i.e., under the complex conjugate representation D(s), 〈sγ | �→ 〈sγ |U † = ∑
ν Uνγ 〈sν|. Under

a rotation, the complete spin vertex is transformed as Lαβ,γ δ �→ Uσδ(U
†)γρLµν,ρσUµα(U †)βν .

Clearly, this vertex is not a rank-four tensor (that would transform under the direct product
(D(s))⊗4), but rather a two-by-two mixed tensor that transforms under (D(s) ⊗ D(s))⊗2. If the
vertex is a scalar, it is invariant under this transformation.

In expressions (24) and (25), the operator arguments of L are decomposed over the
decoupled product basis {|sα〉〈sβ|} of the Liouville space L(Hs). But according to our
diagonalization strategy, we want to use a basis adapted to irreducible representations of
the rotation group. We first perform the Clebsch–Gordan (CG in short) decomposition of the
argument and image representations D(s) ⊗ D(s). These are then recoupled in turn to give the
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complete CG-decomposition of (D(s) ⊗ D(s))⊗2 which yields the irreducible components of
the superoperator. The route thus taken may be traced in the following map:

(D(s) ⊗ D(s)) (D(s) ⊗ D(s))

↘ ↙ ↘ ↙
D(K) ⊗ D(K ′)

↘ ↙
D(L)

. (27)

Following standard procedures from angular momentum theory [18, 13], one can define a set
of irreducible operators adapted to our purpose,

T (K)
q = T (K)

q (s, s) =
∑
mm′

(−)s−m〈ssm′−m|Kq〉|sm′〉〈sm| (28)

with matrix elements

〈sm′|T (K)
q |sm〉 = (−)s−m〈ssm′−m|Kq〉 (29)

where 〈ssm′−m|Kq〉 are the usual CG-coefficients. These types of tensors, called ‘statistical
tensors’ or ‘state multipoles’ are irreducible components of the density matrix and have been
developed by Fano and Racah in the 1950s [18]. Their construction is very similar to the
coupling scheme of angular momentum eigenstates: one simply chooses a linear combination
of spin projectors with suitable CG-coefficients. The definition (28) features a characteristic
minus sign in front of the spin quantum number m that is reminiscent of the contragradient
transformation of 〈sm|. Hermitian conjugation is defined by T

(K)†
q = (−)qT

(K)
−q .

The orthogonality of CG-coefficients assures that the operators (28) are orthonormalized
with respect to the matrix scalar product (A|B) = tr{A†B},(

T (K)
q

∣∣T (K ′)
q ′

) = tr
{
T (K)†

q T
(K ′)
q ′

} = δKK ′δqq ′ . (30)

The set of irreducible tensor operators T (K)
q provides a natural basis that incorporates best

the rotational symmetries. Any linear operator O can be developed in this basis according to
O = ∑

Kq OKqT
(K)
q , with components

OKq = (
T (K)

q

∣∣O) =
∑
mm′

(−)s−m〈ssm′−m|Kq〉〈sm′|O|sm〉. (31)

Inserting |sm′〉〈sm| = ∑
Kq(−)s−m〈ssm′−m|Kq〉T (K)

q in the vertex definition (25), the
superoperator becomes

L =
∑

KqK ′q ′
T

(K ′)
q ′ L(K)

q,K ′q ′
(
T (K)

q

∣∣ · )
(32)

where its left–right irreducible components are L(K)
q,K ′q ′ = (

T
(K ′)
q ′

∣∣LT (K)
q

)
or

L(K)
q,K ′q ′ =

∑
αβγ δ

(−)s−β〈ssα−β|Kq〉Lαβ,γ δ(−)s−δ〈ssδ−γ |K ′−q ′〉. (33)

Now we recouple the irreducible argument and image representations to get the complete
CG-decomposition (last line in (27)). We define a basis of irreducible superoperators
T (L)

m (K,K ′) of rank L with components m = −L, . . . , L:

T (L)
m (K,K ′) =

∑
qq ′

(−)K−q〈K ′Kq ′−q|Lm〉T (K ′)
q ′

(
T (K)

q

∣∣ · )
. (34)
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The recoupled objects can be precisely located on the decomposition map (27):

|sα〉〈sβ| |sδ〉〈sγ |
↘↙ ↘↙
T (K)

q T
(K ′)
q ′

↘ ↙
T (L)

m (K,K ′)

. (35)

The vertex in irreducible superoperator notation is then

L =
∑
KK ′

∑
Lm

LLm(K,K ′)T (L)
m (K,K ′) (36)

with components LLm(K,K ′) = ∑
qq ′(−)K−q〈K ′Kq ′−q|Lm〉L(K)

q,K ′q ′ .

3.3. Scalar diffuson vertex

The above basis set construction and decomposition into irreducible superoperators apply to
arbitrary superoperators. This basis change is especially profitable when the diffuson vertex
under consideration is a scalar with respect to rotations. In this case, its only non-vanishing
irreducible component is L00(K,K ′) for L = 0,m = 0. The usual selection rules of CG-
coefficients then require in (36) that K = K ′ and q = q ′: scalar superoperators indeed connect
irreducible subspaces L(Hs)

(K) with equal rank K. Each of these subspaces has dimension
(2K + 1) and the total dimension is of course preserved,

∑2s
K=0(2K + 1) = d2

s = (2s + 1)2.
As found heuristically in section 2.3, L then takes the form

L =
2s∑

K=0

L00(K,K)T (0)
0 (K,K) =

2s∑
K=0

λKT (K) (37)

with λK = L00(K,K)/
√

2K + 1 and T (K) = √
2K + 1 T (0)

0 (K,K). The calculation
of eigenvalues will be treated in detail in section 4. We now complete the algebraic
characterization of the projectors.

3.3.1. Properties of the scalar projectors. The superoperators T (K) which diagonalize a
scalar vertex are projectors onto the Liouville subspaces L(Hs)

(K) of irreducible operators of
rank K:

T (K) =
√

2K + 1 T (0)
0 (K) =

∑
q

T (K)
q

(
T (K)

q

∣∣ · ) =
∑

q

T (K)
q tr

{
T (K)†

q ·} . (38)

These operators are scalar objects themselves since
∑

q T (K)
q T

(K)†
q generalizes the scalar

product between vector operators (K = 1) to arbitrary rank K [12, (87)]. Thanks to the
orthogonality (30) of the basis tensors, the T (K)’s are indeed orthogonal projectors,

T (K)T (K ′) =
∑
qq ′

T (K)
q

(
T (K)

q

∣∣T (K ′)
q ′

)
︸ ︷︷ ︸

δKK′ δqq′

(
T

(K ′)
q ′

∣∣ · ) = δKK ′T (K). (39)

Their matrix elements in the decoupled basis {|sα〉〈sγ |} of spin projectors are found by
inserting (38) into the superoperator definition (24),

T (K)
αβ,γ δ = tr{(|δ〉〈γ |)T (K)(|α〉〈β|)} =

∑
q

〈γ |T (K)
q |δ〉〈β|T (K)

q
†|α〉. (40)
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Using the matrix elements (29) and the completeness relation of CG-coefficients [12, (14a)],
it is straightforward to show that

TrL T (K) =
∑
αβ

T (K)
αβ,αβ = 2K + 1, (41)

as expected for the identity in the subspace L(Hs)
(K) of dimension 2K + 1. Furthermore,

the projectors T (K) sum up to the identity with respect to the horizontal product rule (5):∑
K T (K)

αβ,γ δ = Iαβ,γ δ = δγαδβδ .

3.3.2. Expression in terms of spin operators. The projector onto scalar operators is the
‘trace-taker’

T (0) = 1

ds

11(11, ·) = 1

ds

11 tr{·}, (42)

with 11 the identity in Hs , which is all but a surprise considering that the scalar part of a
matrix is its trace. In the decoupled basis, we have T (0)

αβ,γ δ = 1
ds

δαβδγ δ , justifying thereby
the tensor (8) found by elementary diagonalization in the electron case. Now it is evident
that a unit superoperator eigenvalue λ0 = 1 is equivalent with trace preservation (and hence
particle/energy conservation).

But already for the projector T (1) onto vector operators, using (40) involves a sum over
products of CG-coefficients, and it is advisable to look for a more transparent formulation.
Equation (38) tells us that we need to find a contraction T (1) = ∑

j Oj (Oj |·) of components

of a vector operator O = (O1,O2,O3) that must be traceless,
∑

α O
j
αα = 0, in order to be

orthogonal to T (0). The only available vector is the generator of rotations: the spin operator
S itself. Its components have zero trace because they generate rotation matrices of unit
determinant (1 = det U = det exp{iθSj } = exp{iθ tr Sj }). Alternatively, one can use the
Wigner–Eckart theorem [12, (85)] to show explicitly that Sq = √

csT
(1)
q up to a normalization

constant such that

T (1) = 1

cs

∑
j

Sj (Sj |·). (43)

The normalization constant cs is fixed by requiring T (1)T (1) = T (1): since S2 = s(s + 1)11s is
the Casimir operator of the irreducible representation D(s) of dimension ds = 2s + 1, we have
3 tr{SiSj } = s(s + 1)(2s + 1)δij . The normalization factor therefore is cs = s(s + 1)(2s + 1)/3.
For electrons, Sj = σ j/2 and c1/2 = 1

2 such that T (1) = 1
2

∑
j σ j (σ j , ·). Its components in

the decoupled basis are indeed those of (9).
This completes the derivation of projectors for the scalar electronic diffuson vertex. For

larger spin, higher orders of K have to be considered which essentially involves a Gram–
Schmidt procedure. In appendix A.2, this is done for the photon case s = 1.

3.4. The crossed vertex as an ordinary operator

We now turn to the diagonalization of the cooperon vertex X that maps an incident tensorial
ket product |sα〉 ⊗ |sβ〉 onto the final tensorial ket product |sγ 〉 ⊗ |sδ〉. In operator form,

X =
∑
αβ,γ δ

|sγ sδ〉Xαβ,γ δ〈sαsβ|. (44)

Therefore, the crossed vertex X : Hs ⊗ Hs → Hs ⊗ Hs can be seen as an ordinary linear
operator or d2

s × d2
s matrix. In this respect, we define the trace for X as

TrC X =
∑
αβ

Xαβ,αβ . (45)
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This trace definition is invariant under the exchange of spin indices (23), such that

TrL L = TrC X. (46)

In other words, the partial Liouville conjugation [19] |sβ〉〈sδ| �→ |sδ〉〈sβ| that maps the
diffuson onto the cooperon vertex preserves their trace, which in turn will permit us to derive
useful sum rules between eigenvalues in section 4.3.

We wish to bring the vertex into a least redundant form for iteration by performing the
usual Clebsch–Gordan decomposition of the argument and image spaces, i.e., a suitable basis
change that transforms the direct product D(s) ⊗D(s) of two irreducible representations acting
on Hs ⊗ Hs into the direct sum D(0) ⊕ D(1) ⊕ · · · ⊕ D(2s) of irreducible representations
D(K),K = 0, 1, . . . , 2s. The appropriate recoupling route now can be mapped out as

(D(s) ⊗ D(s)) (D(s) ⊗ D(s))

↘ ↙ ↘ ↙
D(K) ⊗ D(K ′)

↘ ↙
D(L)

. (47)

We first change to the spherical basis |Kq〉 = ∑
αβ〈ssαβ|Kq〉|sαsβ〉 of the irreducible

subspace H(K). The corresponding vertex components are

XKq,K ′q ′ =
∑
αβ,γ δ

〈ssαβ|Kq〉Xαβ,γ δ〈ssγ δ|K ′q ′〉 (48)

such that X = ∑
Kq,K ′q ′ |Kq〉XKq,K ′q ′ 〈K ′q ′|. Here, X is decomposed over the decoupled

operator basis |Kq〉〈K ′q ′|. We can therefore define recoupled irreducible operators, as in
(28), but in the present context with rank L and their (2L + 1) components

T (L)
m (K,K ′) =

∑
qq ′

(−)K
′−q ′ 〈KK ′q−q ′|Lm〉|Kq〉〈K ′q ′|. (49)

The objects thus used can be precisely located on the map (47)

|sα〉|sβ〉 〈sδ|〈sγ |
↘↙ ↘↙
|Kq〉 〈K ′q ′|

↘ ↙
T (L)

m (K,K ′)

. (50)

T (L)
m (K,K ′)’s provide the most natural basis set for exploiting rotational symmetries in

Hs ⊗ Hs . Now the crossed vertex X can be decomposed over this basis set:

X =
∑
KK ′

∑
Lm

XLm(K,K ′)T (L)
m (K,K ′) (51)

where its irreducible components are

XLm(K,K ′) =
∑
qq ′

(−)K
′−q ′ 〈KK ′q−q ′|Lm〉XKq,K ′q ′ . (52)
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3.5. Scalar crossed vertex: projectors

The decomposition into irreducible components is especially profitable for a scalar vertex
since it has only a single non-vanishing component X00(K,K). The CG-coefficients in (49
and (52) then restrict the sum to K = K ′. Therefore, the vertex connects irreducible subspaces
H(K) of equal rank and can indeed be written as

X =
2s∑

K=0

χKT (K) (53)

with eigenvalues χK = X00(K)/
√

2K + 1 and associated tensors

T (K) =
√

2K + 1 T
(0)

0 (K) =
∑

q

|Kq〉〈Kq|. (54)

These are indeed orthogonal projectors T (K)T (K ′) = δKK ′T (K) onto the irreducible subspaces
H(K). Their matrix elements in the decoupled basis of Hs ⊗ Hs are

T
(K)
αβ,γ δ =

∑
q

〈ssαβ|Kq〉〈ssγ δ|Kq〉, (55)

Using [12, (14a)], one shows that

TrCT (K) =
∑
αβ

T
(K)
αβ,αβ = 2K + 1 (56)

and that the projectors T (K) sum up to the identity,
∑

K T
(K)
αβ,γ δ = δγαδβδ .

Even the simplest projector T (0) on the singlet space H(0) has seemingly complicated
matrix elements in the decoupled basis,

T
(0)
αβ,γ δ = 1

ds

(−)2s+β−γ δ−β,αδ−δ,γ . (57)

For electrons, one may check by hand that this is indeed equivalent to the much nicer formula
(11). For spin 1 particles, the contractions (−)pδ−p,q of spherical basis components become
δij in the Cartesian basis, and one gets

T
(0)
il,jk = 1

3δilδjk (58)

as used in [8]. These heuristic writings in the decoupled basis are much less systematic than
the exceedingly simple form (54) in the spherical basis. Moreover, the matrix elements of T (1)

directly derived from (55) would be rather far from the simple form (12) we wish to justify.
To that purpose, section 3.6 discusses a general way of deriving the crossed projectors T (K)

from the ladder (super-)projectors T (K) and vice versa.

3.6. Recoupling of projectors

The simple exchange rule Lαβ,γ δ = Xαδ,γβ provides us with a convenient way of linking the
diffuson and cooperon projectors. The two diagonalization procedures differ by the coupling
scheme for the two pairs of spin indices and are related by a simple recoupling relation. Indeed,
the matrix elements (40) of the diffuson projectors

T (K)
αβ,γ δ =

∑
q

(−)s−δ〈ssγ−δ|Kq〉(−)s−β〈ssα−β|Kq〉 (59)
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can be derived from the corresponding cooperon projectors (55) with exchanged spin indices
β ↔ δ, T

(K)
αδ,γβ = ∑

q〈ssαδ|Kq〉〈ssγβ|Kq〉, with the help of the appropriate recoupling
relation [12, (34)]:

T
(K)
αβ,γ δ =

∑
K ′

Rs(K,K ′)T (K ′)
αδ,γβ, T (K)

αβ,γ δ =
∑
K ′

Rs(K,K ′)T (K ′)
αδ,γβ . (60)

These relations express a mapping between sets of projector matrix elements
{
T (K)

αβ,γ δ

} ↔{
T

(K)
αδ,γβ

}
defined by a transformation matrix Rs with elements

Rs(K,K ′) = (2K + 1)

{
s s K

s s K ′

}
. (61)

General 6j -symbol symmetry properties and the orthogonality (18) imply that the matrix Rs is
real and circular: Rs = Rs = R−1

s such that det Rs = ±1 with det R1/2 = det R1 = −1. This
transformation conserves the orthogonality of projectors: TrL{T (K)T (K ′)} = (2K + 1)δKK ′ =
TrC{T (K)T (K ′)}.

Putting the transformations (60) to work, the scalar projector (57) on the singlet state
K = 0 is predicted to be given by

T
(0)
αβ,γ δ = (−)2s

ds

∑
K ′

(−)K
′T (K ′)

αδ,γβ . (62)

Using the electron diffuson projectors (8) and (9), one obtains as expected the singlet cooperon
projector in the form (11)

T
(0)
αβ,γ δ = − 1

2

(
T (0)

αδ,γβ − T (1)
αδ,γβ

) = 1
2 (δαγ δβδ − δαδδβγ ). (63)

Similarly, the projector (12) onto the triplet space is

T
(1)
αβ,γ δ = 3

(
1
2T

(0)
αδ,γβ + 1

6T
(1)

αδ,γβ

) = 1
2 (δαγ δβδ + δαδδβγ ). (64)

This completes the derivation of all projectors for the case of spin 1
2 . The photon case is

discussed in the appendix. Now the stage is set for the calculation of eigenvalues.

4. Calculation of eigenvalues

4.1. Diffuson eigenvalues λK

The scalar spin superoperator eigenvalues λK defined through the general decomposition (37)
are at least (2K + 1)-fold degenerate6. They can be calculated either by projecting the vertex
on an arbitrary component q of the respective subspace, λK = (

T (K)
q

∣∣LT (K)
q

)
or directly from

the vertex matrix elements Lαβ,γ δ as

λK = L00(K,K)√
2K + 1

= 1

2K + 1

∑
q

L(K)
q,Kq (65)

= 1

2K + 1

∑
q,αβγ δ

(−)s−β〈ssα−β|Kq〉Lαβ,γ δ(−)s−δ〈ssδ−γ |K−q〉. (66)

Useful information about the possible form of eigenvalues can be gained from this direct
calculation. To that purpose, consider an arbitrary microscopic spin interaction with matrix

6 Of course, larger degeneracies occur if the vertex possesses even higher symmetries; an elementary example is the
identity Iαβ,γ δ = δγαδδβ with its single d2

s -fold degenerate eigenvalue λ = 1.
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elements Vγα = 〈sγ |V |sα〉. This interaction can itself be developed in the basis of irreducible
operators (28), V = ∑

Kq VKqT
(K)
q . Its components

VKq = (
T (K)

q

∣∣V ) = tr
{
T (K)†

q V
} =

∑
αγ

(−)s−α〈ssγ−α|Kq〉Vγα (67)

are the coupling amplitudes of scalar, vector, quadrupolar type, etc. These amplitudes may
depend on microscopic degrees of freedom of the scattering object such as the orientation of
a magnetic impurity. The scattering vertex Lαβ,γ δ = 〈Vγα(V †)βδ〉av is the partial trace over
these degrees of freedom,

Lαβ,γ δ =
∑

KqK ′q ′
〈VKqVK ′q ′ 〉av(−)2s−α−β〈ssγ−α|Kq〉〈ssβ−δ|K ′−q ′〉. (68)

As a scalar vertex has no angular dependence, it always takes the generic form

〈VKqVK ′q ′ 〉av = δKK ′δqq ′sK (69)

where sK is the vertex eigenvalue in the invariant subspace of rank K for the ‘vertical’
coupling scheme. The eigenvalue definition (66) then becomes a sum over products of four
CG-coefficients that defines a 6j -symbol [12, (32)] and finally yields

λK = (−)2s+K
∑
K ′

(−)K
′
Rs(K

′,K)sK ′ . (70)

Remarkably enough, the only information about the microscopic interaction is carried by the
coupling constants sK . The 6j -symbol merely provides the recoupling from the ‘vertical’
form (αγ ) ↔ (βδ) of the initial product of amplitudes 〈Vγα(V †)βδ〉av to the ‘horizontal’ form
(αβ) ↔ (γ δ) necessary for the diagonalization with respect to the multiple scattering product
rule (5).

The simplest possible example of a scalar diffuson vertex is of course given by isotropic
scattering. The interaction is characterized by V (0)

γ α = v0δγα with v0 being a complex number.
The only effective amplitude is then s0 = (2s + 1)|v0|2, and the eigenvalues are simply
λK = |v0|2 for all K which is evident at once since this vertex is simply proportional to the
identity.

The first non-trivial example is given by a vector coupling of the spin-flip form (2).
Using the chosen normalization (3) and Sq = √

s(s + 1)ds/3 T (1)
q by virtue of the Wigner–

Eckart theorem [12, (85)], one finds that the only non-zero coupling is the vector contribution
s1 = ds/3. Using (17), the eigenvalues (66) are then

λK = (−)ds+Kds

{
s s K

s s 1

}
= 1 − K(K + 1)

2s(s + 1)
. (71)

The scalar eigenvalue is identically λ0 = 1, for any value of s, as required by trace preservation.
For electrons

(
s = 1

2

)
, we recover moreover the eigenvalue λ1 = − 1

3 of the vector mode K = 1
found heuristically in section 2.3.

4.2. Cooperon eigenvalues χK

From the vertex diagonalization (53), we find the eigenvalues

χK = X00(K)√
2K + 1

= 1

2K + 1

∑
q

XKq,Kq (72)

= 1

2K + 1

∑
q,αβγ δ

〈ssαβ|Kq〉Xαβ,γ δ〈ssγ δ|Kq〉. (73)
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As a function of the elementary coupling coefficients sK defined in (69), the eigenvalues are

χK = (−)2s+K
∑
K ′

Rs(K
′,K)sK ′ . (74)

Using (17), the eigenvalues of the normalized spin-flip crossed vertex (4) with the only non-
zero coupling s1 = ds/3 are thus

χK = (−)2s+K(2s + 1)

{
s s K

s s 1

}
= K(K + 1)

2s(s + 1)
− 1. (75)

In the electronic case (s = 1
2 ), this yields indeed the previously found values χ0 = −1 in the

singlet channel and χ1 = 1
3 in the triplet channel.

4.3. Direct recoupling of eigenvalues

The precise relation between diffuson and cooperon eigenvalues can be understood by
observing that both of them are obtained by a recoupling procedure from a ‘vertical’ coupling
scheme of the initial scattering amplitudes towards the relevant direction of diagonalization,
‘horizontal’ for the diffuson vertex and ‘diagonal’ for the cooperon vertex. This implies that
the different eigenvalues are linked by simple recoupling relations and useful sum rules.

Starting from a scalar intensity vertex V with no angular dependence, characterized by
the product 〈VKqVK ′q ′ 〉av = δKK ′δqq ′sK , the interaction vertices describing, respectively, the
ladder and the crossed diagrams can be written in the form

Lαβ,γ δ =
∑
K

sKT (K)
δβ,γ α, Xαβ,γ δ =

∑
K

sKT (K)
βδ,γ α. (76)

Clearly, the coupling constants sK appear as the vertex eigenvalues for the vertical coupling
scheme. However, the projectors are not in a form suitable for iteration of the multiple
scattering sequence with the horizontal product (5). Using the transformations

T (K)
δβ,γ α = (−)K

∑
K ′

(−)2s+K ′
Rs(K,K ′)T (K ′)

αβ,γ δ (77)

T (K)
βδ,γ α =

∑
K ′

(−)2s+K ′
Rs(K,K ′)T (K ′)

αβ,γ δ, (78)

the vertices can be brought into the suitable form

Lαβ,γ δ =
∑
K

λKT (K)
αβ,γ δ Xαβ,γ δ =

∑
K

χKT
(K)
αβ,γ δ. (79)

Using the definitions (77) and (78), the eigenvalues λK and χK are then immediately derived
as a function of the vertical eigenvalues sK , given by expressions (70) and (74). But this in
turn implies that the eigenvalues λK and χK are also directly linked to each other by a simple
recoupling procedure. Inverting the relations (70) and (74) with the help of the orthogonality
relation (18) for Rs , one obtains the vertical eigenvalues as

sK = (−)2s+K
∑
K ′

(−)K
′
Rs(K

′,K)λK (80)

= (−)2s+K
∑
K ′

Rs(K
′,K)χK ′ . (81)

Injecting (80) into (70) and (81) into (74), we indeed find

λK =
∑
K ′

Rs(K
′,K)χK ′ , χK =

∑
K ′

Rs(K
′,K)λK ′ . (82)
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These relations had been derived previously in the case of photon scattering (formula (52) of
[8], s = 1) and are here generalized to arbitrary spin. These recoupling relations replace the
heuristic prescription w2 ↔ w3 for the exchange of contraction weights in the photonic case
[20] to arbitrary spin.

Taking the trace (26) or (45) of the decompositions (79) and (76), we find the following
useful sum rule:∑

K

(2K + 1)χK =
∑
K

(2K + 1)λK =
∑
K

(2K + 1)T (K)
ββ,αα = (2s + 1)s0. (83)

The last equality is explained by the fact that the ‘horizontal’ trace over all modes K in (79)
projects onto the scalar component K = 0 in (76). By symmetry of our recoupling relations,
naturally also the inverse relation holds: taking the ‘vertical’ trace in (76) yields∑

K

(2K + 1)sK = Lαα,ββ = (2s + 1)λ0. (84)

Let us demonstrate the power of these relations by taking again the spin-flip vertex as a
paradigmatic example. Its diffuson and cooperon eigenvalues (71) and (75) have turned out
to be equal but of opposite sign, χK(s) = −λK(s) for any K and s. Indeed, comparing the
eigenvalue expressions as a function of the elementary couplings sK , (70) and (74), we can
trace back this sign to the fact that the spin-flip vertex has only one finite component, the
vector coupling s1 = ds/3. The relation (82) then reduces to an orthogonality of 6j -symbols
and yields immediately λK(s) = −χK(s). The trace (83) reduces to λ0 + 3λ1 = 0 (remember
s0 = 0) which immediately fixes the triplet eigenvalue to λ1 = − 1

3 once the trace-preserving
eigenvalue λ0 = 1 is known. By now it should be evident that these values are after all of
purely geometrical origin.

4.4. Reciprocity

Quite generally, the diffuson vertex of some microscopic spin interaction V is Lαβ,γ δ =
〈VγαVδβ〉av = 〈Vγα(V †)βδ〉av while the corresponding crossed vertex is Xαβ,γ δ = Lαδ,γβ =
〈Vγα(V †)δβ〉av = 〈Vγα([V t]†)βδ〉av. Clearly, these vertices are identical if the microscopic
interaction is symmetric, V = V t. This complies with the general rule that the reciprocity
theorem assures perfect equality of ladder and crossed contributions if the system’s S-matrix
is symmetric [2]. In terms of the irreducible amplitudes VKq defined in (67), symmetry of the
microscopic interaction is equivalently stated as

V = V t ⇔ VKq = (−)qVK−q . (85)

This is to be contrasted with the Hermiticity condition

V = V † ⇔ VKq = (−)qVK−q . (86)

For example, a simple scalar interaction V (0) = v011 is Hermitian if v0 is real. Non-
Hermitian interaction would describe absorption or gain which is known to preserve equality
between ladder and crossed contributions [2]. Indeed, V (0) is always symmetric since
V

(0)
Kq = δK0δq0

√
2s + 1v0 fulfils (85).

Less trivially, the spin-flip vector coupling V (1) = gJ · S has irreducible components

V
(1)
Kq = δK1

g√
cs

(−)qJ−q . (87)

Of course, the interaction is Hermitian for a real g. But it is not symmetric in general because
(87) is different from (−)qV

(1)
K−q as soon as Jq �= (−)qJ−q , i.e., if the impurities are not

all aligned. This is at the origin of the fact that spin-flip scattering suppresses the diffusive
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pole of the cooperon (the ‘unitary case’ in magnetoresistance [3]). Furthermore, it explains
the observation that it is precisely the antisymmetric part t

(1)
ij of the atomic photon scattering

tensor (i.e., the vector coupling component) that breaks the equivalence of ladder and crossed
vertices [20]. If, however, one can align all vectorial scatterers, for example with an external
magnetic field, one can choose the quantization axis in this direction such that Jq = δq0J0,
and equality of ladder and crossed terms is re-established. This effect has been observed
with electronic transport in metal samples containing magnetic impurities and subject to a
strong magnetic field [21]. There, weak localization corrections to transport are suppressed by
spin-flip processes at low fields, but are restored at high fields because all magnetic impurities
are then aligned with the field. A similar argument is at the origin of the observed magnetic
field enhancement of coherent backscattering of light by a resonant sample of ultracold atoms
[22] whose ground-state degeneracies are lifted by a magnetic field.

Having at hand the diffuson and cooperon eigenvalues (70) and (74) as functions of the
elementary coupling coefficients sK , we see immediately that a difference between eigenvalues
is generated only by coupling amplitudes sK with odd K = 1, 3, . . . (for electrons and photons,
only K = 1 is possible). A simple inspection of the microscopic interaction vertex of a
particular physical impurity type permits to decide whether this coupling is of vectorial rank
K = 1, therefore breaks the equivalence of ladder and crossed structures and eventually leads
to an effective dephasing of weak localization effects, or whether it is of scalar or symmetric
type K = 0, 2 and then does not affect localization effects.

5. Consequences for relevant transport quantities

5.1. Diffuson spin transport

The formalism of irreducible spin representations greatly simplifies the expression of spin
transport quantities that are of interest in the growing number of ‘spintronics’ applications.
The probability of quantum diffusion, defined in subsection 2.1, with spin degrees of freedom
can be decomposed into its irreducible components:

Pαβ,γ δ(q, ω) = 1

2πρ

〈
GR

αγ GA
βδ

〉 =
2s∑

K=0

PK(q, ω)T (K)
αβ,γ δ. (88)

The probability PK(q, ω) with spatial and temporal Fourier variables q and ω can be computed
independently in each spin sector K if the elementary scattering vertex as well as the average
propagation between scatterers has been diagonalized appropriately. For the summed ladder
series D = L/(1 − GL), each diffuson mode up to an overall normalization reads

P
(d)
K (q, ω) = λK

1 − λK(1 + iωτ − Dq2τ)
(89)

where the diffusion approximation for the intensity propagation in the Kubo limit ωτ, q� � 1
has been made; the diffusion constant in d dimensions is D = �2/τd in terms of the
scattering mean-free path � and the mean-free time τ = �/v = 1/(2πρλ0) (evaluated
from the self-energy in the Born approximation with λ0 = ∑

γ Lαα,γ γ = 1 in our
normalization). The probability time dependence for each irreducible sector therefore is
of the form PK(q, t) ∼ exp[−Dq2t − t/τd(K)] with a diffuson spin decay time

τd(K) = τ
λK

1 − λK

(90)
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given directly as a function of the vertex eigenvalue λK . The time-dependent diffuson
probability of classical scattering behaves as

P
(d)
αβ,γ δ(q, t) =

2s∑
K=0

e−Dq2t−t/τd (K)T (K)
αβ,γ δ. (91)

After injection of a certain spin state |sα〉 at r, the total classical probability for final states with
arbitrary spin γ at arbitrary position r′ should be normalized to unity,

∑
γ Pαα,γ γ (q = 0, t) =

1. Indeed, the trace over the final spin index γ in (91) projects onto the scalar component
K = 0, such that the conservation of probability requires 1/τd(0) = 0 which is indeed the
case for a unit scalar eigenvalue λ0 = 1.

The overall probability of retaining the initial spin state, say α = + 1
2 =: +, is

P++,++(t) = (
T (0)

++,++

)
+ e−t/τ1

(
T (1)

++,++

) = 1
2 (1 + e−t/τd (1)) which deviates only for short times

from the equidistribution value 1
2 . The degree of spin polarization π(t) = P++,++(t)−P++,−−(t)

relaxes on the time scale τd(1) as π(t) = e−t/τd (1).
Consider for the sake of concreteness the case of multiple electronic spin-flip scattering

with the vertex (2). This vertex has a negative eigenvalue λ1 = − 1
3 such that formally the

decay time τd(1) becomes negative, which renders the above predictions unacceptable. In fact,
in a disordered electronic sample, there are scalar defects responsible for elastic scattering and
momentum relaxation, say with a rate γe = nev

2
0 depending on the density ne of defects and

their interaction strength v0. In spin space, these vertices have unit eigenvalues both for ladder
and crossed vertices. In addition there are magnetic impurities, each with a scattering vertex
(2), centred at random positions rm with density nm and corresponding momentum scattering
rate γm = nmg2 1

3J (J + 1)s(s + 1). The inverse of the total scattering rate γ = γe + γm is
the mean-free time τ = 1/γ . The effective average spin-flip scattering vertex then has the
normalized ladder eigenvalues

λeff
K = γe + γmλK

γ
= 1 − γm

γ
(1 − λK) (92)

which for the spin-flip case are λeff
0 = 1 and λeff

1 = 1 − 4γm/3γ . The characteristic spin
polarization decay rate reads

1

τd(1)
= 1 − λeff

1

τλeff
1

= 1 − λ1

τm

+ O

(
γm

γ

)
≈ 4

3τm

. (93)

5.2. Cooperon dephasing

The cooperon is the sum of all maximally crossed diagrams which, strictly speaking, starts
with the second-order scattering term because the single scattering event is already counted in
the diffuson: C = XGX/(1 − GX). Here, X is the crossed vertex associated with the diffuson
vertex for scattering with a total rate γ = 1/τ and normalized to a unit diffuson eigenvalue
λ0 = 1. Summing the geometric series with the returned advanced propagator line (see
figure 1(c)) gives the decomposition

Cαβ,γ δ(Q, ω) =
2s∑

K=0

CK(Q, ω)T
(K)
αβ,γ δ (94)

where Q = k + k′ is the sum of external momenta. The cooperon eigenfunctions for each
irreducible mode are

CK(Q, ω) = 1

τ

χK

−iω + DQ2 + 1/τc(K)
(95)
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with characteristic cooperon dephasing times

τc(K) = τ
χK

1 − χK

(96)

that depend directly on the crossed eigenvalues χK .
In applications to weak localization, one needs the integrated cooperon, both over

momenta and spin indices, that counts arbitrary loops of counter-propagating amplitudes.
Up to a normalization

Pc(ω) =
∑
Q

∑
γ

Cαγ,γ α(Q, ω) =
2s∑

K=0

wK

∑
Q

CK(Q, ω) (97)

where the cooperon spin-channel weights wK are determined by the crossed contraction
wK = ∑

γ T (K)
αγ,γ α that corresponds to the sum over all final spin states β = γ in the maximally

crossed diagrams of figure 1(b). Using the recoupling formula (16), one finds

wK =
∑
K ′

Rs(K,K ′)
∑

γ

T (K ′)
αα,γ γ = Rs(K, 0) = (−)2s+K 2K + 1

2s + 1
. (98)

Remarkably, although the integrated cooperon describes a renormalization of intensity
diffusion (the scalar diffuson mode K = 0), in general all the cooperon modes K = 0, . . . , 2s

contribute with non-zero weights [23].
Taking again the case of electronic elastic and spin-flip scattering as an example, the

singlet and triplet channel weights are w0 = − 1
2 and w1 = 3

2 , and the effective eigenvalues
are

χ eff
K = γe + γmχK

γ
= 1 − γm

γ
(1 − χK). (99)

For a small spin-flip scattering rate γm/γ � 1, the corresponding dephasing rates are

1

τc(K)
= 1 − χK

τm

. (100)

Inserting the spin-flip eigenvalues χ0 = −1 and χ1 = 1
3 , the singlet and triplet dephasing

times are τc(0) = τm/2 and τc(1) = 3τm/2. If the eigenvalues (99) in the numerator of (97)
are approximated by unity, the integrated spin-flip cooperon finally reads

Pc(ω) =
∑
Q

[
3

2

1

−iω + DQ2 + 2/3τm

− 1

2

1

−iω + DQ2 + 2/τm

]
. (101)

The coupling to the uncontrolled degrees of freedom of magnetic impurities dephases both
the singlet and triplet channels irreversibly and leads to a drastic decrease of weak localization
effects in disordered electronic samples. A similar effect is found for the weak localization of
photons scattered by cold atoms with degenerate dipole transitions [9].

Note that in the case of electronic spin–orbit scattering, the triplet channel with
positive weight w1 = 3

2 is also rapidly damped, whereas the singlet channel with negative
weight w0 = (−)2s/(2s + 1) = − 1

2 survives and leads to antilocalization and a positive
magnetoresistance [10] which appears here as characteristic for any half-integer spin.

6. Summary and conclusion

In this paper, we have developed a systematic method to diagonalize the elementary spin
scattering vertices which are the building block of diffuson and cooperon multiple scattering
sequences for particles of arbitrary spin s. Our results therefore provide the conceptual
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background for a truly unified description of the mesoscopic spin physics of electrons and
photons. We have identified the relevant projectors onto invariant subspaces that are irreducible
with respect to the rotation group. Once these operators have been obtained, the diagonalization
allows us to transform the vertical coupling scheme for the scattering amplitudes into a
horizontal scheme necessary for subsequent iteration of the multiple scattering sequence. We
have obtained the diffuson and cooperon scattering eigenvalues as a function of the microscopic
scattering mechanism, together with simple recoupling relations as well as useful sum rules.
We have shown how these eigenvalues directly enter the expressions of the phase coherence
times of weak localization.

The method presented here may be extended to non-scalar vertices such as the transverse
photon propagator G(q) that was diagonalized exactly in [8]. This transverse propagator is
no longer purely scalar at non-zero momentum transfer q �= 0, but contains quadrupolar parts
coupling the modes K = 0, 2. A treatment of these non-scalar vertices would start from
the expressions (36) and (51) of the present work and derive the appropriate projectors and
eigenvalues. On a similar line of thought, light scattering by nematic crystals [24] as well
as photon scattering vertices of atoms under the influence of an external magnetic field [22]
require anisotropic diagonalization. Finally, these techniques may become useful for quantum
computation schemes involving spin degrees of freedom (such as the one studied by Loss and
di Vincenzo [25], to cite a paper employing a superoperator formalism quite similar to ours) or
for entanglement characterization in irreducible representations of observable-induced tensor
product spaces [26].
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Appendix. Photon scattering

A.1. Atomic vertex eigenvalues

For photons, polarization-dependent scattering proves more complicated than for electrons
because of field transversality. The spin degrees of freedom are not decoupled from average
propagation such that the complete diagonalization of the diffuson and cooperon series is
much more involved. Nonetheless, the projection onto irreducible subspaces permits to derive
all eigenvalues and projectors for isotropic photon vertices as well, as has been done in [8] for
the case of photon scattering from degenerate atomic dipole transitions. For resonant photon
scattering, the elementary interaction is of the form Vdip = −D · E where the electric field
operator E, proportional to the polarization vector ε, creates or annihilates photons whereas
the dipole operator D induces internal transitions between electronic states with angular
momentum Jg and Je. Obviously, the elementary interaction Vdip is of the same vectorial type
as the electronic spin-flip vertex (1). The full photon scattering process, however, comprises
the annihilation of the incident photon followed by the creation of the scattered one. Therefore,
the full scattering amplitude is a second-order process in Vdip, and its elementary coupling
coefficients sK (see equation (30) of [8]) contain already all orders K = 0, 1, 2 obtained by
the recoupling of two vector interactions of rank 1. The ladder and crossed eigenvalues are
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then expressed in terms of 6j - and 9j -symbols. All relations between eigenvalues derived in
section 4 apply to the photon case as well. The sum rule (83) has not been evaluated so far.
For resonant photon scattering from a closed dipole transition Jg → Je, it reads

∑
K

(2K + 1)χK =
∑
K

(2K + 1)λK = 3(2Je + 1)

2Jg + 1
. (A.1)

The more general case of photon scattering from entire multiplets of hyperfine or fine
structure dipole transitions can be treated as well [27]. In that case, the eigenvalues become
frequency dependent, but all algebraic relations of the present work continue to hold.

A.2. Photon projectors

Concerning the projectors onto irreducible subspaces, it was shown in [8] that one and the
same set of projectors

T (0)
il,jk = 1

3δilδjk, (A.2)

T (1)
il,jk = 1

2 (δij δkl − δikδjl), (A.3)

T (2)
il,jk = 1

2 (δij δkl + δikδjl) − 1
3δilδjk, (A.4)

diagonalizes both ladder and crossed vertex alike. Here, the indices i, j, k, l are Cartesian
indices in configuration space R

3.
We still need to connect these tensors to the diffuson (super-)projectors T (K) derived

in 3.3.1 and the seemingly different cooperon projectors T (K) derived in 3.5. Of course,
all formulae of the present work are designed to apply to spin 1 as well. But spin 1 is
special because its states transform under the fundamental representation SO(3) itself. This
representation has the peculiar feature that its dimension is 3 and therefore equal to the
dimension of the abstract group. For spin 1, one therefore can use either the standard spherical
basis {|1q〉} where Sz|1q〉 = q|1q〉 is diagonal (and which was used throughout the present
paper) or the Cartesian basis of R

3 itself where the generators are S
j

kl = −iεijk (in this so-
called adjoint representation, the generators are essentially given by the structure constants
fjkl = −εjkl of the Lie algebra SO(3)). Using the latter representation in the definitions (42)
and (43), we indeed recover immediately (A.2) and (A.3).

In order to obtain the symmetric traceless projector K = 2, we have to push the calculation
one step further. Extrapolating from the cases K = 0, 1, the construction rule for higher rank
projectors (38) should be clear: they are complete contractions

T (K) =
∑

i1i2···iK
Oi1i2···iK (Oi1i2···iK |·) (A.5)

of operators Oi1i2···iK that are direct products of K copies of Si with the appropriate
symmetrization. Up to normalization, the operator of the K = 2 projector is

Oij = SiSj −
∑

k

(Ok|SiSj )Ok − (O0|SiSj )O0 (A.6)

where
√

dsO
0 = 11 pertains to the scalar projector (42). This construction is nothing but the

Gram–Schmidt procedure used to orthogonalize the basis {en} of a vector space according to
e1 �→ e1, e2 �→ e2 − (e1 · e2)e1, etc. After short algebra, one finds

Oij = 1

2
(SiSj + SjSi) − s(s + 1)

3
δij 11 (A.7)
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without need for further normalization. This operator is manifestly symmetric and traceless
by construction. Using S

j

kl = −iεijk , we obtain the traceless symmetric projector (A.4) we
sought to justify.

For particles of larger spin than s = 1 (or more general vertices with higher order
irreducible components), the calculation of higher order projectors requires to compute traces
of increasingly large products of spin operators, tr{SiSj · · · Sp}. Beyond the first terms
K = 0, 1, 2, carrying out the traces becomes rapidly cumbersome, and the formulation (40) in
terms of spherical components T (K)

q turns out to be more economic since the CG-coefficients
automatically incorporate the correct symmetrization.

At this point, we have completely justified the diffuson tensors (A.2)–(A.4). However, at
first sight the corresponding crossed projectors T (K) derived in 3.5 have nothing in common
with them. But inserting the relevant transformation coefficients for s = 1

(R1)K,K ′ =

1/3 −1/3 1/3

−1 1/2 1/2
5/3 5/6 1/6


 (A.8)

into the recoupling relation (60) yields indeed T
(K)
il,jk = T (K)

il,jk, K = 0, 1, 2. This proves that
the diagonalization of spin 1 ladder and crossed vertices in Cartesian components involves the
unique set of isotropic projectors (A.2)–(A.4). This is no longer the case for half-integer spins
s = 1

2 , 3
2 , . . . , because their SU(2) representations are complex unitary which means that

ladder and crossed vertices couple rotationally different objects. The same conclusion holds
for integer spins s = 2, 4, . . . , though they admit real orthogonal representations of SO(3).
This is because the adjoint representation is not available and one has to work a priori with
two distinct sets of projectors.
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