
Exchange-induced ordinary reflection in a single-channel
superconductor-ferromagnet-superconductor junction

Jérôme Cayssol1,2 and Gilles Montambaux1
1Laboratoire de Physique des Solides, Associé au CNRS, Université Paris Sud, 91405 Orsay, France

2Laboratoire de Physique Théorique et Modèles Statistiques, Associé au CNRS, Université Paris Sud, 91405 Orsay, France
(Received 18 May 2004; published 27 December 2004)

The stationnary Josephson effect in a clean superconductor-ferromagnet-superconductor(SFS) junction is
reexamined for arbitrarily large spin polarizations. The quasiclassical calculation of the supercurrent assumes
that the Andreev reflection is complete for all channels. However, de Jong and Beenakker have shown that the
Andreev reflection at a clean FS interface is incomplete, due to the exchange interaction in the ferromagnet.
Taking into account this incomplete Andreev reflection, we investigate the quasiparticle spectrum, the Joseph-
son current and the 0-p transition in a ballistic single channel SFS junction. We find that energy gaps open in
the phase-dependent spectrum. Although the spectrum is strongly modified when the exchange energy in-
creases, the Josephson current and the 0-p transition are only weakly affected by the incomplete Andreev
reflection, except when the exchange energy is close to the Fermi energy.
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I. INTRODUCTION

Ferromagnetism and singlet superconductivity are antago-
nist phenomena. Ferromagnetism favors spin alignment and
concentrates the magnetic field lines whereas superconduc-
tivity expels the magnetic field and is supported by singlet
pairing in the case of conventionnal superconductors. Never-
theless, as shown by Fulde-Ferrel1 and Larkin-Ovchinnikov2

(FFLO), superconductivity and ferromagnetism may coexist
in a bulk sample for sufficiently small exchange splitting. In
this case, Cooper pairs acquire a finite momentum propor-
tional to the exchange splitting, leading to a nonuniform su-
perconducting order parameter. However, this FFLO state
has not been observed unambiguously in bulk samples. The
situation is morefavorable in ferromagnet/superconductor
heterostructures. Owing to the proximity effect, supercon-
ducting correlations are present in the ferromagnet even in
the absence of pairing interaction. In particular,
superconductor-ferromagnetic-superconductor(SFS) junc-
tions and superconductor-ferromagnetic-insulator-
superconductor(SFIS) junctions can exhibit an equilibrium
state where the phase differencex between the supercon-
ducting leads isp.3 This so-calledp state is reminiscent of
the FFLO state. In recent experiments, thep state was dis-
covered by Ryazanovet al.4 in SFS junctions and by Kontos
et al.5 in SFIS junctions. When the superconducting phase
differencex is nonzero, a nondissipative currentIsxd flows
through the junction. This so-called Josephson current is car-
ried by Cooper pairs in the superconducting leads and by
quasiparticles in the ferromagnet. The conversion between
these two kinds of carriers occurs at the interfaces by means
of a scattering process known as Andreev reflection.6,7 In the
case of a clean normal-metal—superconductor(NS) interface
with identical Fermi velocities, an incoming spin-up electron
is completely Andreev reflected as a spin-down hole, and a
Cooper pair is created in the superconductor. In the presence
of a tunnel barrier, the amplitude of the Andreev reflection is
reduced: the incoming electron is partially reflected as a hole

with opposite spin and partially as an electron with the same
spin.

de Jong and Beenakker8 have studied the Andreev reflec-
tion in clean ferromagnet-superconductor(FS) junctions and
have shown that the effect of ferromagnetism is twofold.
First, the exchange splitting energyEex induces a mismatch
between spin-up and spin-down Fermi wave vectors. This
produces an additional phase shift between electrons and
holes in the ferromagnet. Second, in contrast to the clean NS
case, the Andreev reflection is not complete: ordinary reflec-
tion appearseven in the absence of an insulating layer. This
phenomenon is due to the exchange potential step at the FS
interface and it strongly modifies the transport properties of a
clean FS contact with a large numberN of modes per spin
direction. As a result, the conductance of a ballistic point
contact in a FS junction has been shown to decrease monoto-
nously from 4Ne2/h in the nonferromagneticEex=0 contact
to zero in the half-metallic ferromagnetEex=EF, EF being the
Fermi energy.8 Using this suppression of the subgap conduc-
tance by the exchange interaction, an experimental method
has been developped to mesure directly the spin polarization
of a ferromagnetic sample by a transport mesurement.9,10

Whereas these transport properties have attracted a lot of
theoretical11–13 and experimental interest, there are few the-
oretical works addressing the influence of the incomplete
Andreev reflection on the thermodynamical properties of
clean FS or SFS heterojunctions.14–17Indeed, the stationnary
Josephson current of a clean multichannel SFS junction has
been calculated by Buzdinet al.18 in the framework of the
Eilenberger equations19 under the assumption of complete
Andreev reflection. The critical current has been found to
oscillate as a function of the phase shifta=2Eexd/"vF be-
tween an electron and its Andreev reflected hole,d being the
length of the ferromagnet andvF the Fermi velocity. More-
over, due to the large number of channels, these oscillations
are damped as a function of the exchange field.18 The ques-
tion arises whether incomplete Andreev reflection at a clean
SFS junction may lead to a modification of the Josephson
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current as strong as the reduction of the conductance in a FS
contact. Naively, one might expect the exchange induced or-
dinary reflection to have the same physical effect as the po-
tential barrier in a SFIS junction. In the well-studied case of
SFIS junctions, ordinary reflection leads to a reduction of the
Josephson current which evolves gradually towards the usual
Josephson formIsxd= Icsinx as the transparency of the insu-
lating layer vanishes. In the case of a short SFIS junction,
Chtchelkatchevet al. have shown that the 0-p transition
phase diagram depends on the transparency of the insulating
layer.14 In planar double-barrier Josephson junctions(SIFIS),
Radovicet al.15 have studied the interplay between geometri-
cal oscillations of the critical current with the oscillations
induced by 0-p crossovers. The former oscillations result
from the quantization of electrons normaly reflected between
the two barriers whereas the latter originate from the
electron-hole interference described above. As a result, these
authors have obtained temperature-induced transitions be-
tween 0 andp states, as in single-barrier SFIS junctions.14

In the present paper, the thermodynamic properties of a
clean single channel SFS junction are studied forarbitrarily
large spin polarizationsused in spintronics.20 In particular,
we show how the excitation spectrum, the stationnary Jo-
sephson current, and the 0-p transition are affected by the
exchange induced ordinary reflection at the FS interfaces.
The paper is organized as follows: in Sec. II, we derive the
phase-dependent excitation spectrum of a clean SFS junc-
tion. Bogoliubov–de Gennes equations are used in order to
account for both Andreev and normal scattering. We show
that the exchange-induced ordinary reflection opens gaps at
the phase differencesx=0 andx=p. In comparison, there is
no gap in the quasiclassical spectrum.21–23 In the case of a
SFIS junction, the gap opening occurs only atx=p. Section
III is devoted to the Josephson current, which depends on
two independent parameters: the productkFd and the ratio of
the exchange and Fermi energiesh=Eex/EF, which param-
etrizes the spin polarization of the ferromagnet and tunes the
balance between ordinary scattering and Andreev scattering
at the FS interfaces. This is contrary to the quasiclassical
theory in which the current is described by the single com-
binaisona=2Eexd/"vF=hkFd. For smallh, the main scatter-
ing mechanism is the Andreev reflection and the quasiclassi-
cal results are recovered in the limith→0 andkFd→` with
finite hkFd. For a fully polarized ferromagnet(a half-metallic
ferromagnet)—namely, for h=1—Andreev reflection is
completely suppressed and the spectrum becomes phase in-
dependent and carries no current. In spite of the strong modi-
fications of the spectrum, we find that the Josephson current
remains almost unaffected by the exchange-induced ordinary
reflection up to values of the exchange fieldEex close toEF.
The 0-p transition is studied in Sec. IV and is shown to be
unaffected by the ordinary reflection in contrast to the 0-p
transition in SFIS junctions14 or SIFIS junctions15 with low
transparency. Our results are in agreement with those of Ra-
dovic et al.15 in the limit of two fully transparent barriers and
zero Fermi wave vector mismatch. In particular for the trans-
parent SFS junction, we also find a very small deviation
between the exact and the quasiclassical currents and no
temperature-induced transition, even for large spin polariza-
tions.

II. SPECTRUM

The excitation spectrum of a clean one-channel SFS junc-
tion is well known in the limit of very small exchange split-
ting energiesEex!EF. This so-called quasiclassical spectrum
is obtained by assuming that Andreev reflection is complete.
With the help of the Bogoliubov–de Gennes formalism we
derive an exact eigenvalue equation that takes into account
both Andreev and normal reflection for arbitrary exchange
energy 0,Eex,EF. Even at relatively small exchange en-
ergy, the corresponding spectrum differs from the quasiclas-
sical one by the presence of gaps. We investigate analytically
(for small spin polarization) and numerically how the An-
dreev spectrum evolves when the exchange energyEex and
the length of the ferromagnet are varied.

A. Eigenvalue equation

We consider the simplest model of a clean one-channel
SFS junction. The itinerant ferromagnetism is described
within the Stoner model by a one body potentialVssxd=
−sEex which depends on the spin direction. The indexs
= ±1 denotes spin up and spin down. In the superconducting
leads,Vssxd=0. The kinetic part of the Hamiltonian is

H0 =
1

2m
F"

i

d

dx
− qAsxdG2

− EF, s1d

where m is the effective mass of electrons and holes. The
vector potentialAsxd is responsible for the phase differencex
between the leads, andEF="2kF

2 /2m is the Fermi energy.
The Fermi velocities are identical in both superconductors
and in the central metal forEex=0. When they are different,
ordinary and Andreev reflections are modified.12,13 In the ab-
sence of spin-flip scattering, the spin channelssu↑ ,v↓d and
su↓ ,v↑d do not mix. The purely one-dimensional electronlike
ussxd and holelikev−ssxd wave functions satisfy two setss
= ±1 of independent Bogoliubov–de Gennes equations

SH0 + Vssxd Dsxd
Dsxd* − H0

* + Vssxd
DS us

v−s
D = esxdS us

v−s
D , s2d

where esxd is the quasiparticle energy mesured from the
Fermi energy. As in any mean-field theory, the pair potential
Dsxd should be determined self-consistently from the wave
functionsussxd andv−ssxd. In the case of SNS junctions or
weakly spin-polarized SFS junctions, one can neglect the
reduction of the superconductivity in the leads by adopting a
point contact geometry.8,18,24–26Then the Josephson current
is usually evaluated using the square-well model for the su-
perconducting pair potential:Dsxd= uDue±ix/2 in the left-right
lead andDsxd=0 in the central ferromagnetic segment. In the
present paper, we study the effect of large spin polarization
for a given square-well potentialDsxd. The eigenvectors of
Eq. (2) are strictly electron like or hole like with a plane-
wave spatial dependence because of the absence of disorder.
The electron and hole wave vectors, denoted, respectively,
by ke,h

s andhe,h
−s , must satisfy
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"2fke,h
s g2

2m
− EF = e + sEex,

"2fhe,h
−s g2

2m
− EF = − e − sEex. s3d

Introducing the degree of spin polarizationh=Eex/EF, we
obtain

ke,h
s = kFÎ1 + sh +

e

EF
,

he,h
−s = kFÎ1 − sh −

e

EF
. s4d

We consider only excitations the energies of which are
smaller than the superconducting gap. Matching the wave
functions and their derivatives at the FS interfaces, we obtain
the following eigenvalue equation for the Andreev levels: 2

16khcosx = − 2sk2 − kF
2dsh2 − kF

2dfcosDkd− cosSkdg

− sk − kFd2sh + kFd2 cossSkd+ 2wed

− sk + kFd2sh − kFd2 cossSkd− 2wed

+ sk + kFd2sh + kFd2 cossDkd− 2wed

+ sk − kFd2sh − kFd2 cossDkd+ 2wed, s5d

where, for convenience, we definek=ke,h
s , h=he,h

−s , Dk
=Dke,h

s =k−h, Sk=Ske,h
s =k+h, and we=arccosse /Dd. The

typical energies of the problem are the superconducting gap
D, the exchange energyEex, the level spacing in the ferro-
magnet mins"vF /d,Dd, and the Fermi energyEF. In conven-
tionnal s-wave superconductors, we haveD /EF,0.01. The
exact spectrumessxd depends on two dimensionless param-
eters: the ratioh=Eex/EF and the productkFd. In spintronics
experiments, the so-called spin polarization is defined asP
=sX↑−X↓d / sX↑+X↓d whereX is a spin-resolved observable.20

As examples, in spin-resolved tunneling spectroscopy27 Xs is
essentially the tunneling density of states in the spin channel
s, whereas it is the spin-polarized current in point-contact
Andreev spectroscopy.9,10 Due to the nontrivial band struc-
tures of the ferromagnetic materials,28 the corresponding val-
ues ofP differ even for the same sample. For an isotropic
quadratic dispersion relation, the spin polarization is identi-
cal to the ratio of the exchange and Fermi energiesP=sI↑
− I↓d / sI↑+ I↓d=h. More generally, the quantityh parametrizes
the degree of spin polarization: it is zero for a paramagnetic
material and it isP=h=1 for a fully polarized ferromagnet.
The spin polarizations of strong ferromagnetic elements like
Fe, Co, and Ni are between 0.3 and 0.5. The recently discov-
ered half metallic oxydes, like La0.7Sr0.3MnO3 and CrO2, ex-
hibit nearly complete spin polarization.9,10,27 In the present
work, the spin polarizationh=Eex/EF is arbitrary and the
ratio D /EF!1. In a first step, we solve the eigenvalue equa-
tion (5) perturbatively in the limit of small spin polarization
h!1 for any lengthd. We complete our study by numerical
results for arbitrary spin polarization in the case of short
junctions.

B. SNS spectrum and quasiclassical spectrum

Obviously, for zero exchange fieldh=0, we recover the
eigenvalue equation of a ballistic SNS junction,29

cosx = cossDke,h=0
s d − 2wed = cosS2ed

"vF
− 2weD , s6d

with complete spin degeneracy between thesu↑ ,v↓d and
su↓ ,v↑d channels. For very small spin polarizationh
=Eex/EF!1, a crude approximation of Eq.(5) is given by
the formula

cosx = cosS2ed

"vF
+ a − 2weD , s7d

with a=2Eexd/ s"vFd. This expression was first obtained by
solving the Eilenberger equations with a continuity assump-
tion on both normal and anomalous quasiclassical Green’s
functions.18,22 It was also obtained later in the framework of
the linearized Bogoliubov–de Gennes equations.21 Physi-
cally, these derivations of the SFS spectrum neglect ordinary
reflection induced by the exchange potentialVssxd. In this
limit, the only effect of the exchange field is to modify the
SNS spectrum, Eq.(6), by a shifta=2Eexd/"vF=hkFd of the
superconducting phase. This shift lifts the degeneracy be-
tween the two spin channelssu↑ ,v↓d and su↓ ,v↑d.

C. Small spin polarization

Here, we provide a more accurate approximation of Eq.
(5). By expanding Eq.(5) to the leading order inh, we
obtain, in the regimeh!1,

cosassx,ed = cossDke,h
s d − 2wed, s8d

whereassx ,ed is an effective phase difference related to the
true superconducting phase differencex by the expression

cosassx,ed = S1 −
h2

8
Dcosx +

h2

4

e2

D2 cos 2kFd

+
h2

8
cosDke,h

s d. s9d

The associated spectrum depends on the length of the ferro-
magnet via the productkFd and on the spin polarizationh
=Eex/EF. In the Appendix, we calculate how this spectrum
deviates from the above-mentionned quasiclassical spectrum.
The largest deviations are reached for phase differencesx
=0 andx=p where gaps appear, as shown in Fig. 1. The
opening of these gaps which oscillate as a function ofkFd
and h and vanish for particular values of these parameters
reveals the presence of some amount of ordinary reflection.
The natural energy scales for the gaps are provided by

Ex = F d

"vF
+

1

ÎD2 − e0
2sxd

G−1

s10d

for x=0 andx=p, respectively.
For long junctionsd@j0, this energy scale is the level

spacingEx<"vF /d. There are many Andreev levels which
cross atx=0 andx=p in the nonperturbated spectrum. The
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amplitude of the gaps is larger in the “high-energy” spectrum
close to the superconducting gape.D. They vanish in the
low-energy part of the spectrume!D, as shown in Fig. 1(a).
The absence of gaps at low energy is a general phenomenon,
because in the limite!D, the eigenvalue equation, Eqs.(8)
and (9), tends to

cosx = cosS2ed

"vF
+ s

2Eexd

"vF
− pD , s11d

which is identical with the “gapless” quasiclassical equation
(7) because 2we<p.

In the case of a short junctiond!j0, the spectrum con-
tains only two spin-polarized Andreev levelss= ±1 given by

essad = DUcosSasx,ed + sa

2
DU . s12d

The expressions for the gapd0 at x=0,

d0 =
hD

2
usinkFd sinhkFdu, s13d

and for the gapdp at x=p,

dp =
hD

2
ucoskFd sinhkFdu, s14d

are derived in the Appendix(see also Fig. 2). The gapsd0
and dp vanish simultaneously when the shift between an
electron and its Andreev reflected hole ishkFd=np with n
= . . . ,−1,0,1, . . .. When theferromagnet length corresponds
to an interger or half-integer number of Fermi wavelengths—
namely, whenkFd=np—d0 vanishes anddp is maximal. If
the size of the ferromagnet and the Fermi wavelength satisfy
kFd=sn+1/2dp, one obtains the opposite configuration:dp is
zero andd0 is maximal.

It is instructive to compare these results with the case of a
SFIS junction for which the ordinary reflection originates
from the potential barrier of the insulating layer.14 At the
usual level of approximation, a SFIS junction is described by

two parameters: the electron-hole phase shifta=2Eexd/"vF
and the transparencyD of the insulating layer. Similarly to
the case of a clean SFS junction, the spectrum is given by

essad = DUcosSasxd + sa

2
DU , s15d

but the effective phase has a different expression14

cosasxd = 1 − 2D sin2 x

2
. s16d

This effective phase leads to the gapsd0=0 and dp

=2Î1−D cossa/2d. There is only one gap located atx=p,
and it is independent ofkFd, whereas in an exact treatment of
a SFIS junction with large spin polarizationh, the gaps
should depend on it. In this latter case ordinary reflection
would originate from both insulating layer and exchange
splitting.

In the following paragraph, we check the validity of our
results for larger exchange energies.

D. Arbitrary spin polarization: Numerical study

For large spin polarizationsh=Eex/EF, the perturbative
approach breaks down and finding the solutions of Eq.(5) is
a harder task. In the case of a small junctiond!j0, we solve
Eq. (5) numerically and obtain the two Andreev levelsessxd
for each value of the phase differencex. Typical results are
shown in Fig. 3 for increasing spin polarizationsh and for a
particular value ofkFd=10. In the perturbative regimeh
,0.2, it has been shown in Sec. II C that the exact spectrum
is very close to the quasiclassical spectrum except in the
vicinity of x=0 andx=p. Figures 3(a) and 3(b) show that
this statement is still valid up to very large spin polarizations.
But above a particular spin polarizationh*, the spectrum
undergoes a qualitative change: the lowest Andreev level no
longer crosses the Fermi level, as shown in Fig. 3(c).

To understand this crossover, we calculate the supercon-
ductive phase differencex0

s corresponding to a zero-energy

FIG. 1. Spectrum of a clean SFS junction in the perturbative
limit h=0.1 and forD /EF=10−3. Two examples are shown:(a) long
junction with kFd=104 (d=5j0) and (b) short junction withkFd
=10 (d=0.05j0). Gaps open forx=0 andx=p due to the presence
of ordinary reflection. There are two zero energy Andreev levels
located at the phase differencesp±Dke=0,hd.

FIG. 2. Gaps atx=0 (circles) andx=p (triangles) as a function
of the spin polarizationh in a short junction withkFd=10. Equa-
tions (13) and (14) provide a good approximation for smallh
,0.1 (dash-dotted line,d0; solid line, dp).
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Andreev state. For sufficiently small spin polarizationh
,0.2, it is always defined and given by

x0
s = p + Dke=0,h

s d = p + ssÎ1 + h − Î1 − hdkFd, s17d

but close to the half-metal caseh<1, the eigenvalue equa-
tion (5) leads to

cosx0
s = −

sinsÎ1 − hkFddsinsÎ1 + hkFdd

2Î2s1 − hd
, s18d

which has two solutions forh,h* and no solution forh
.h*.

Figure 4 shows that the critical polarizationh* depends
on the lengthd of the ferromagnet in a very peculiar way.
For kFd,3, the Andreev spectrum has always two states at
the Fermi level. ForkFd.3, h* becomes smaller than 1. For
spin polarizations above the critical valueh*, the Andreev
spectrum has now a gap at the Fermi level. In the next sec-
tion, we will study how this gap affects the Josephson cur-
rent. Even more strikingly, when the lengthd increases, the
gap at the Fermi level alternatively closes and reopens: one
has an alternance between regions withh* ,1 (such as in
Fig. 3, a gap opens at the Fermi level) and regions with
h* =1 (with no gap at the Fermi level). Practically, forkFd

.10, no gap opens at the Fermi level for polarizations
smaller thanh* =0.94.

III. JOSEPHSON CURRENT

In this section, we obtain the Josephson current through a
clean short SFS junction forarbitrary large spin polariza-
tions. In particular, we study how the incomplete Andreev
reflection induced by the ferromagnet affects the current. For
h!1, ordinary reflection is negligible and the current is
given by the usual quasiclassical expression. In the case of a
half-metal h=1, the current vanishes due to the complete
suppression of the Andreev reflection. We study the cross-
over between these two limits by calculating the current from
the spectrum obtained in the previous section.

A. Josephson current

The Josephson current is given by

Isxd =
2e

"

]V

]x
, s19d

where Vsxd is the phase-dependent thermodynamic poten-
tial. The potential can be calculated from the excitation spec-
trum by using the formula30

VsT,m,fd = − 2TE
0

`

o
s

lnS2 cosh
essxd
2T

D +E dxuDsxdu2/g

+ TrH0. s20d

We restrict our attention to the short-junction case. For each
value of x, we solve Eq.(5) numerically to obtain the two
spin-polarized Andreev levels. Then, we obtain numerically
the current using Eqs.(19) and (20).

B. Quasiclassical current

For a weak ferromagneth!1, the assumption of com-
plete Andreev reflection is justified. Therefore, one may
compute the current from the spectrum(7) (here ford!j0)
and obtain the so-called quasiclassical current18

Iqcsx,ad =
pD

f0
o

s=±1
sin

x + sa

2
tanhF D

2T
cosSx + sa

2
DG .

s21d

Except for the presence of the phase shift

FIG. 3. Spectrum of a short SFS junction for
increasing spin polarizationsh=Eex/EF with
kFd=10. The thick solid lines correspond to the
spectrum obtained by solving Eq.(5). The thin
lines represent the corresponding quasiclassical
estimates witha=sÎ1+h−Î1−hdkFd. We have
chosenD /EF=10−3.

FIG. 4. The zero-energy Andreev states disappear above a criti-
cal polarizationh* which depends onkFd. In Sec. III, we show that
the current is very close to the quasiclassical estimate with discon-
tinuities when the Andreev level crosses the Fermi level[Fig. 5(a)]
for h,h*. For h.h*, the Josephson current is strongly modified
and has no discontinuity, since a gap opens at the Fermi level[Figs.
5(b) and 6]. The minima ofh* correspond to values ofkFd.sn
+1/2dp /Î2.
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a = sÎ1 + h − Î1 − hdkFd, s22d

formula (21) is similar to the expression for the single-mode
current in a short SNS junction.31,24 In the T=0 case, the
current-phase relationship of a SNS junction has a sharp dis-
continuity atx=p because the lowest Andreev level passes
below the Fermi level while another Andreev level carrying
an opposite current moves above.24 In the SFS junction case,
the degeneracy of the Andreev levels is lifted, and this cross-
ing occurs, respectively, atxs=p+sa for each of the non-
degenerate Andreev levels. Consequently, the current shows
two jumps at these phase differences, as shown in Fig. 5(a).

C. Crossover from h=0 to h=1

In Sec. II D, we have obtained a sharp crossover between
(i) a regime where the quasiclassical spectrum is only modi-
fied by gaps opening atx=0 and x=p and (ii ) a regime
where the Andreev spectrum is strongly modified by the van-
ishing of the zero-energy states.

For spin polarizations 0,h,h*, the current is well ap-
proximated by the quasiclassical formula, Eq.(21), except
for phase differences close tox=0 and x=p. Near these
values, it turns out that the correction of the level energies
induces opposite changes on the two individual currents. The
sum of these corrections cancels out and the total Josephson
current is unchanged. Consequently, although the spectrum is
modified, one may still use the quasiclassical formula(21) at
the currentfor any value ofx with a very good accuracy.
This statement is valid up to very high spin polarization, as
shown in Fig. 5(a). In the limit h,0.2, the effective phase
approach leads to

Isx,ad = S1 −
h2

8
D sinx

sina
Iqcsa,ad. s23d

In conclusion, ordinary reflection induces only a very small
reduction of the current of orderh2.

Whenh* ,h,1, the current-phase relationship is com-
pletely modified and becomes nearly sinusoidal, as shown in
Fig. 5(b) (see also Fig. 6). The discontinuity in the current
disappears because a gap opens at the Fermi level: there is no
Andreev level at zero energy. In conclusion, the crossover
between the regime where the current is given by Eq.(21)
and the regime with zero currenth.1 takes place in a nar-
row window of spin polarizations, typically for 0.94,h

,1 whenkFd=10. For largerkFd, the width of this window
scales as 1/skFdd2.

IV. TRANSITION 0- p IN SMALL SFS JUNCTIONS

In this section, we study the effect of exchange induced
ordinary reflection on the 0-p transition in the case of short
junctions. In order to compare the stability of the zero-phase
and of thep-phase states, we compute the energy

Esx,ad = − D o
s=±1

UcosSasx,ed + sa

2
DU . s24d

In the perturbative regimeh,0.2, the effective phase ap-
proach applies and one obtains

cosasx = 0d = S1 −
h2

8
D +

h2

8
cosa,

cosasx = pd = − S1 −
h2

8
D +

h2

8
cosa. s25d

Thus

asx = 0d = ±
h

Î2
cos

a

2
,

asx = pd = p ±
h

Î2
sin

a

2
. s26d

The energiesEs0,ad andEsp ,ad are represented in Fig. 7.
WhenEsx=p ,ad.Esx=0,ad, the zero-phase state is stable
and thep-phase state is instable. The curves corresponding
to different values ofh are close to each other and differ
slightly only in the vicinity of a=0 and a=p. All these
curves intersect at the same 0-p transition pointsa=p /2 et
a=3p /2. Therefore the 0-p transition is not modified by the
ordinary reflection induced by the ferromagnet.

In the moderate- and strong-polarization regimes, numeri-
cal calculation of the energiesEsx=0d and Esx=pd as a
function ofa=Dke=0,h=sÎ1+h−Î1−hdkFd leads to the same
conclusion. The transition in a SFS junction at large ex-
change field is robust to ordinary reflection induced by the
exchange field. This is contrary to what happens in the SFIS

FIG. 5. Zero-temperature current of a short SFS junction with
kFd=10. (a) Even for a nearly complete spin polarizationh=0.9,
the exact current(thick line) and the quasiclassical approximation
(thin line) are identical.(b) For h=0.95, they are completly differ-
ent. The natural scale for the current isI0=2eD /". FIG. 6. Current-phase relationships forkFd=10 and various spin

polarizations in the regimeh* ,h,1.
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case.14 The energyEs0,ad=−2Ducosau of a SFIS junction is
independent of the transparencyD, whereasEsp ,ad evolves
gradually as the transparencyD is varied. As a result, the
transition points strongly depend onD: the domain of stabil-
ity for the p phase shrinks around the valuea=p and even
disappears atD=1. In a clean SFS junction, the stability
domain of thep phase remains unchanged because of the
interplay between the two gaps atx=0 andx=p. It is remi-
niscent of the Josephson current robustness obtained in the
previous section.

V. CONCLUSION

We have obtained the phase dependent excitation spec-
trum of a clean one-channel SFS junctionfor arbitrary spin
polarizations. The present treatment takes into account the
ordinary reflection of electrons caused by the ferromagnet/
superconductor interface. We have shown that gaps open for
phase differencesx=0 andx=p. These gaps depend both on
the spin polarizationh=Eex/EF and on the length of the fer-
romagnet via the productkFd. In spite of these strong modi-
fications of the spectrum, the Josephson current and the sta-
bility of the p state are robust against the ordinary reflection
due to the exchange field up to very large spin polarizations
h*. We obtain a sharp crossover between(i) a regime where
the current is given by the quasiclassical theory and(ii ) the
fully spin-polarized regime with zero current. We have ne-
glected the effect of the ferromagnet channel on the large
superconducting reservoirs. This is fully supported in the
point-contact geometry for SNS or weakly spin-polarized
SFS junctions. For high spin polarizations, there is a possi-
bility that even a single channel leads also to a reduction of
the superconductivity. In this case, we expect that our results
still hold if one substitutes the values ofD andd by effective
onesDef f,D anddef f.d.
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APPENDIX

In a first approximation, the spectrum of the clean SFS
junction is obtained by a shifta=2Eexd/"vF of the phase and
it is the solution of the eigenvalue equation

cosssa − 2we0
sd = cosx. sA1d

The exact position of an Andreev level may be written as
essxd=e0

ssxd+e1
ssxd, wheree1

ssxd is small. Inserting this ex-
pression in Eqs.(8) and (9) and using Eq.(A1), we obtain,
for small h,

cosSsa − 2we0
s + h

2e1
s

Ex
D = cosx −

h2

8
cosx

+
h2

4
S e0

s

D
D2

cos 2kFd −
h2

8
cosa,

sA2d

where we have introduced the notation

1/Ex =
1

ÎD2 − e0
s2

. sA3d

Expanding Eq.(A2) and using Eq.(A1), one obtains a
second-order equation for the deviatione1sxd:

cosxS e1
s

Ex
D2

+ sinx
e1

s

Ex

=
h2

16
Fcosx − 2S e0

s

D
D2

cos 2kFd + cosaG .

For x=0 andx=p, the deviation is of orderh, whereas
for x=p /2 it is proportional toh2. The gaps occur at the
level crossings of the unperturbated spectrume0sxd, at x=0
andx=p. They are defined by

d0 = ue1
ssx = 0d − e1

−ssx = 0du,

dp = ue1
ssx = pd − e1

−ssx = pdu,

with

e1
ssx = 0d

E0
=

h

2
F1 − 2S e0

s

D
D2

cos 2kFd + cosaG1/2

,

e1
ssx = pd

Ep

=
h

2
F1 + 2S e0

s

D
D2

cos 2kFd − cosaG1/2

.

Using

E0 = DUsin
a

2
U ,

Ep = DUcos
a

2
U ,

we obtain the size of the gaps atx=0 andx=p:

d0 =
hD

2
usinkFd sinau,

dp =
hD

2
ucoskFd sinau. sA4d

FIG. 7. Zero-state energyEsx=0,ad and p-state energyEsx
=p ,ad for h=0.1, 0.3, 0.5. The intersections of the different curves
remain in the vicinity ofa=p /2 anda=3p /2.
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