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The stationnary Josephson effect in a clean superconductor-ferromagnet-supercof@k@tgunction is
reexamined for arbitrarily large spin polarizations. The quasiclassical calculation of the supercurrent assumes
that the Andreev reflection is complete for all channels. However, de Jong and Beenakker have shown that the
Andreev reflection at a clean FS interface is incomplete, due to the exchange interaction in the ferromagnet.
Taking into account this incomplete Andreev reflection, we investigate the quasiparticle spectrum, the Joseph-
son current and the @-transition in a ballistic single channel SFS junction. We find that energy gaps open in
the phase-dependent spectrum. Although the spectrum is strongly modified when the exchange energy in-
creases, the Josephson current and the téansition are only weakly affected by the incomplete Andreev
reflection, except when the exchange energy is close to the Fermi energy.
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I. INTRODUCTION with opposite spin and partially as an electron with the same
spin.

Ferromagnetism and singlet superconductivity are antago- de Jong and BeenakKenave studied the Andreev reflec-
nist phenomena. Ferromagnetism favors spin alignment angbn in clean ferromagnet-superconduct) junctions and
concentrates the magnetic field lines whereas supercondugave shown that the effect of ferromagnetism is twofold.
tivity expels the magnetic field and is supported by singlefFirst, the exchange splitting ener@y, induces a mismatch
pairing in the case of conventionnal superconductors. Nevelbetween spin-up and spin-down Fermi wave vectors. This
theless, as shown by Fulde-Fetrahd Larkin-Ovchinniko?  produces an additional phase shift between electrons and
(FFLO), superconductivity and ferromagnetism may coexistholes in the ferromagnet. Second, in contrast to the clean NS
in a bulk sample for sufficiently small exchange splitting. In case, the Andreev reflection is not complete: ordinary reflec-
this case, Cooper pairs acquire a finite momentum proporion appearsven in the absence of an insulating lay€his
tional to the exchange splitting, leading to a nonuniform suphenomenon is due to the exchange potential step at the FS
perconducting order parameter. However, this FFLO staténterface and it strongly modifies the transport properties of a
has not been observed unambiguously in bulk samples. Thean FS contact with a large numkérof modes per spin
situation is morefavorable in ferromagnet/superconductotlirection. As a result, the conductance of a ballistic point
heterostructures. Owing to the proximity effect, superconcontact in a FS junction has been shown to decrease monoto-
ducting correlations are present in the ferromagnet even inously from 4€’/h in the nonferromagneti&,,=0 contact
the absence of pairing interaction. In particular, to zero in the half-metallic ferromagnEt,=Eg, E¢ being the
superconductor-ferromagnetic-superconduct®FS junc-  Fermi energy. Using this suppression of the subgap conduc-
tions and superconductor-ferromagnetic-insulatortance by the exchange interaction, an experimental method
superconducto(SFIS junctions can exhibit an equilibrium has been developped to mesure directly the spin polarization
state where the phase differengebetween the supercon- of a ferromagnetic sample by a transport mesureffié&ht.
ducting leads is7.® This so-calledr state is reminiscent of Whereas these transport properties have attracted a lot of
the FFLO state. In recent experiments, thestate was dis- theoreticat'3and experimental interest, there are few the-
covered by Ryazanoet al in SFS junctions and by Kontos oretical works addressing the influence of the incomplete
et al® in SFIS junctions. When the superconducting phaseAndreev reflection on the thermodynamical properties of
differencey is nonzero, a nondissipative currdi) flows  clean FS or SFS heterojunctiols’ Indeed, the stationnary
through the junction. This so-called Josephson current is cagdosephson current of a clean multichannel SFS junction has
ried by Cooper pairs in the superconducting leads and byeen calculated by Buzdiet al® in the framework of the
quasiparticles in the ferromagnet. The conversion betweeRilenberger equatiof$ under the assumption of complete
these two kinds of carriers occurs at the interfaces by mean&ndreev reflection. The critical current has been found to
of a scattering process known as Andreev reflectibin the  oscillate as a function of the phase shift 2E.,d/#vg be-
case of a clean normal-metal—supercondu@i$) interface  tween an electron and its Andreev reflected hdlbeing the
with identical Fermi velocities, an incoming spin-up electronlength of the ferromagnet ang: the Fermi velocity. More-
is completely Andreev reflected as a spin-down hole, and aver, due to the large number of channels, these oscillations
Cooper pair is created in the superconductor. In the presenere damped as a function of the exchange figllhe ques-
of a tunnel barrier, the amplitude of the Andreev reflection istion arises whether incomplete Andreev reflection at a clean
reduced: the incoming electron is partially reflected as a holSFS junction may lead to a modification of the Josephson
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current as strong as the reduction of the conductance in a FS Il. SPECTRUM

contact. Naively, one might expect the exchange induced or- o i
dinary reflection to have the same physical effect as the po- The excitation spectrum of a clean one-channel SFS junc-
tential barrier in a SFIS junction. In the well-studied case oftion is well known in the limit of very small exchange split-
SFIS junctions, ordinary reflection leads to a reduction of thding energie€,,< Eg. This so-called quasiclassical spectrum
Josephson current which evolves gradually towards the usué obtained by assuming that Andreev reflection is complete.
Josephson forr(x)=1.sin y as the transparency of the insu- With the help of the Bogoliubov—de Gennes formalism we
lating layer vanishes. In the case of a short SFIS junctionglerive an exact eigenvalue equation that takes into account
Chtchelkatchewet al. have shown that the @-transition both Andreev and normal reflection for arbitrary exchange
phase diagram depends on the transparency of the insulatimgpergy 0<E.,<Eg. Even at relatively small exchange en-
layer!4In planar double-barrier Josephson junctigB#1S),  ergy, the corresponding spectrum differs from the quasiclas-
Radovicet al'® have studied the interplay between geometri-sical one by the presence of gaps. We investigate analytically
cal oscillations of the critical current with the oscillations (for small spin polarizationand numerically how the An-
induced by O crossovers. The former oscillations result dreev spectrum evolves when the exchange enEggynd
from the quantization of electrons normaly reflected betweerhe |ength of the ferromagnet are varied.

the two barriers whereas the latter originate from the

electron-hole interference described above. As a result, these

authors have obtained temperature-induced transitions be- A. Eigenvalue equation

tween 0 andr states, as in single-barrier SFIS junctidfs. We consider the simplest model of a clean one-channel

In the present paper, the thgrmodynaml_c propert@s of rs junction. The itinerant ferromagnetism is described
clean single channel SFS junction are studiedafidnitrarily within the Stoner model by a one body potenfi&)(x)=

large spin polarizationaused in spintronicd’ In particular, . L .
we show how the excitation spectrum, the stationnary Jo- oEg, which depends on the spin direction. The index

sephson current, and the®+ransition are affected by the _ij denote_sosp|ﬂ UE. an(_j Spin dc:‘wn n thglsuperc_onductmg
exchange induced ordinary reflection at the FS interfaceé.ea $.Vo(x)=0. The kinetic part of the Hamiltonian is

The paper is organized as follows: in Sec. I, we derive the 5
phase-dependent excitation spectrum of a clean SFS junc- H :—[_———qA(x)} -E, (1)
tion. Bogoliubov—de Gennes equations are used in order to

account for both Andreev and normal scattering. We show

that the exchange-induced ordinary reflection opens gaps stherem is the effective mass of electrons and holes. The
the phase differenceg=0 andy=. In comparison, there is vector potentialA(x) is responsible for the phase differenge
no gap in the quasiclassical spectrér?®In the case of a between the leads, alﬂ:ﬁzk,zz/Zm is the Fermi energy.
SFIS junction, the gap opening occurs onlyyatw. Section  The Fermi velocities are identical in both superconductors
Il is devoted to the Josephson current, which depends oand in the central metal fd€,,=0. When they are different,
two independent parameters: the prodcat and the ratio of  ordinary and Andreev reflections are modiftéd3In the ab-

the exchange and Fermi energigs E.,/Er, which param- sence of spin-flip scattering, the spin channgisv,) and
etrizes the spin polarization of the ferromagnet and tunes theu, ,v;) do not mix. The purely one-dimensional electronlike
balance between ordinary scattering and Andreev scattering,(x) and holelikev_,(x) wave functions satisfy two sets

at the FS interfaces. This is contrary to the quasiclassicat +1 of independent Bogoliubov—de Gennes equations
theory in which the current is described by the single com-

binaisona=2E.d/%vg=nked. For smalln, the main scatter- Ho + V(%) A(X) u, u,

ing mechanism is the Andreev reflection and the quasiclassi- N x ( ) = e()()( ) (2

cal results are recovered in the limjt— 0 andk-d— o with AX) ~Ho* V(%) U-o

finite »ked. For a fully polarized ferromagnéa half-metallic ) ) )
ferromagnet—namely, for »=1—Andreev reflection is where €(y) is the quasiparticle energy mesured from the

completely suppressed and the spectrum becomes phase fermi energy. As in any mean-field th'eory, the pair potential
dependent and carries no current. In spite of the strong modf(X) should be determined self-consistently from the wave
fications of the spectrum, we find that the Josephson currefginctionsu,(x) andv_,(x). In the case of SNS junctions or
remains almost unaffected by the exchange-induced ordinayeakly spin-polarized SFS junctions, one can neglect the
reflection up to values of the exchange filg, close toE..  reduction of the superconductivity in the leads by adopting a
The 0-r transition is studied in Sec. IV and is shown to be Point contact geometfy!#24-26Then the Josephson current
unaffected by the ordinary reflection in contrast to ther 0- is usually evaluated using the square-well model for the su-
transition in SFIS junctiorié or SIFIS junction® with low  Perconducting pair potentialt(x)=|A[e*¥’? in the left-right
transparency. Our results are in agreement with those of Rdead andA(x)=0 in the central ferromagnetic segment. In the
dovic et al2%in the limit of two fully transparent barriers and present paper, we study the effect of large spin polarization
zero Fermi wave vector mismatch. In particular for the transfor a given square-well potentia(x). The eigenvectors of
parent SFS junction, we also find a very small deviationEq. (2) are strictly electron like or hole like with a plane-
between the exact and the quasiclassical currents and neave spatial dependence because of the absence of disorder.
temperature-induced transition, even for large spin polarizaThe electron and hole wave vectors, denoted, respectively,
tions. by k¢, andh.%, must satisfy

U_(T
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ﬁz[k‘; 2 B. SNS spectrum and quasiclassical spectrum
: - EF — e+ O'Eex,

2m Obviously, for zero exchange fielgg=0, we recover the
eigenvalue equation of a ballistic SNS junctfn,
hZ[h;U]Z 2¢d
om Ep=-e- ok 3 cosy = cogAkY, _od - 2¢,) = cos(i - 2(pe> , (8
’ hUF

Introducing the degree of spin polarizatiofFEc,/Er, We  yjth complete spin degeneracy between {he,v,) and
obtain (u;,vy) channels. For very small spin polarization

6 =E./Er<1, a crude approximation of E@5) is given by
ke, =Ke\/1+on+ E the formula
F

2ed
cosy=co§ — +a-2¢,|, (7)
ho7 =key/1-0n— — (4) hue
€7 F Y EF'

with a=2E.d/(hvg). This expression was first obtained by

We consider only excitations the energies of which aresolving the Eilenberger equations with a continuity assump-
smaller than the superconducting gap. Matching the wav&0n on blgtgz normal and anomalous quasiclassical Green’s
functions and their derivatives at the FS interfaces, we obtaiftnctions:*<“It was also obtained later in the framework of

the following eigenvalue equation for the Andreev levels: 2the linearized Bogoliubov-de Gennes equati@n&hysi-
cally, these derivations of the SFS spectrum neglect ordinary

16khcosy = — 2(k? - k&)(h? - k?)[cosAkd - cosZkd] reflection induced by the exchange potentiglx). In this
 (k=ko)h+ k) cos2kd + 24 SNS specirum. E4B) by & shita_ 22, for—ed ol the
~ (k+ke)*(h = ke)? cogZkd - 2¢,) superconducting phase. This shift lifts the degeneracy be-
+ (k+ ke)X(h + ke)? cog Akd - 20,) tween the two spin channe(s,;,v ) and(u,v,).
+ (k=ke)?(h —ke)? codAkd + 2¢,), (5) C. Small spin polarization
where, for convenience, we definke=kZ , h=h_, Ak Here, we provide a more accurate approximation of Eq.

=AkZ,=k—h, Tk=3k7 =k+h, and ¢ =arccose/A). The (5). By expanding Eq(5) to the leading order iny, we
typical energies of the problem are the superconducting gapbtain, in the regimey<1,

A, the exchange enerdy,,, the level spacing in the ferro-

magnet miive/d,A), and the Fermi energe. In conven- cosa’(x,€) = codAk,,d - 2¢,), (8)

tionnal swave superconductors, we hauéEg<0.01. The \yherea(y, e) is an effective phase difference related to the
exact spectrune’(x) depends on two dimensionless param-y,e superconducting phase differenc®y the expression
eters: the ratioy=E,,/Er and the produckgd. In spintronics
experiments, the so-called spin polarization is defined® as
=(X; =X/ (X;+X|) whereX is a spin-resolved observapie.
As examples, in spin-resolved tunneling spectroséoly is 5

essentially the tunneling density of states in the spin channel + L cosAK® d (9)
o, whereas it is the spin-polarized current in point-contact 8 o

Andreev spectroscofy'® Due to the nontrivial band struc-

tures of the ferromagnetic materiafsthe corresponding val- magnet via the produdtzd and on the spin polarization

ues of P differ even for the same sample. For an |sotrop|c:Eex/EF_ In the Appendix, we calculate how this spectrum

quadratic d|sper5|on relation, the spin polar_lzatlon IS Identl'deviates from the above-mentionned quasiclassical spectrum.
cal to the ratio of the exchange and Fermi enerdgtes|,

The largest deviations are reached for phase differegces

=1)/(l;+1)=7. More generally, the quantity parametrizes =0 and y=m where gaps appear, as shown in Fig. 1. The

the degree of_ s.pin polarization: it is zero for a paramagnetic‘opening of these gaps which oscillate as a functiorkaf
material and it isP=7=1 for a fully polarized ferromagnet. 54, and vanish for particular values of these parameters
The spin polarizations of strong ferromagnetic elements likg oy eals the presence of some amount of ordinary reflection.

Fe, Co, and Ni are betweer_1 0.3 and 0.5. The recently discCoVrha natural energy scales for the gaps are provided by
ered half metallic oxydes, like 1;aSry sMnO3; and CrQ, ex-

hibit nearly complete spin polarizatidi%?” In the present | d 1 1
work, the spin polarizationy=E,,/E¢ is arbitrary and the E,= h_v,: + V’AZ——eZ() (10
ratio A/EF<1. In a first step, we solve the eigenvalue equa- o\X
tion (5) perturbatively in the limit of small spin polarization for y=0 andy=, respectively.

n<<1 for any lengthd. We complete our study by numerical For long junctionsd> &;, this energy scale is the level
results for arbitrary spin polarization in the case of shortspacingE,~%uvg/d. There are many Andreev levels which
junctions. cross aty=0 andy= in the nonperturbated spectrum. The

2 2 2
o - Y 7
cosa’(x,€) = (1 ~ 5 >COSX+ 4 A cos Xgd

The associated spectrum depends on the length of the ferro-
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kpd = 10* kpd =10
A A S
2 =
g [y
0 T X 0 Fio X
(@) (b)

FIG. 1. Spectrum of a clean SFS junction in the perturbative
limit =0.1 and forA/Er=1073. Two examples are show(a) long
junction with ked=10" (d=5¢) and (b) short junction withked FIG. 2. Gaps aj=0 (circles and y=1r (triangle9 as a function
=10(d=0.0%y). Gaps open foy=0 andy= due to the presence of the spin polarizationy in a short junction withked=10. Equa-

of ordinary reflection. There are two zero energy Andreev Ievelstions (13) and (14) provide a good approximation for smat
located at the phase differences Ak ,d. <0.1 (dash-dotted linesy; solid line, 5.).

amplitude of the gaps is larger in the “high-energy” spectru

close to the superconducting gap-A. They vanish in the 54 yhe transparend of the insulating layer. Similarly to

low-energy part of the spectruen<A, as shown in Fig. ). the case of a clean SFS junction, the spectrum is given by
The absence of gaps at low energy is a general phenomenon,

Mwo parameters: the electron-hole phase sPE. d/%ivg

because in the limig< A, the eigenvalue equation, Eq8) : a(y) +oa
and(9), tends to €o(a) =4 co 2 ’ (15)
oSy = CO 2ed + UZEexd _ Tr)' (11) but the effective phase has a different expresgion
hUF ﬁUF Y
which is identical with the “gapless” quasiclassical equation cosa(y) =1- 2D sir’ 2 (16)

(7) because 3.~ .

In the case of a short junctiom< &, the spectrum con- This_effective phase leads to the ga@gg=0 and &,
tains only two spin-polarized Andreev levels +1 given by ~ =2y1-D coga/2). There is only one gap located gt 1,
and it is independent d&-d, whereas in an exact treatment of

e(a)=A co{w) ) (12) & SFIS junction with large spin polarization, the gaps
2 should depend on it. In this latter case ordinary reflection
The expressions for the gaf at y=0, \évrt))litigjngongmate from both insulating layer and exchange
_mA . In the following paragraph, we check the validity of our
%= 2 [sinked sin 7ied], 13 results for larger exchange energies.
and for the gapd, at y=, D. Arbitrary spin polarization: Numerical study

nA ) For large spin polarizationg=Eg,/Eg, the perturbative
0= 7|COSde sin 7ked|, (14)  approach breaks down and finding the solutions of(Bgjis
a harder task. In the case of a small junctib® &,, we solve
are derived in the Appenditsee also Fig. 2 The gapsd, Eq. (5) numerically and obtain the two Andreev level¥ y)
and &, vanish simultaneously when the shift between anfor each value of the phase differengeTypical results are
electron and its Andreev reflected holesg-d=nz with n  shown in Fig. 3 for increasing spin polarizatiopsand for a
=...,-1,0,1,.... When théerromagnet length corresponds particular value ofk-d=10. In the perturbative regimey
to an interger or half-integer number of Fermi wavelengths—<0.2, it has been shown in Sec. Il C that the exact spectrum
namely, wherked=nm— &, vanishes and, is maximal. If  is very close to the quasiclassical spectrum except in the
the size of the ferromagnet and the Fermi wavelength satisfyicinity of y=0 and y=. Figures 8a) and 3b) show that
ked=(n+1/2)7r, one obtains the opposite configuratidy:is  this statement is still valid up to very large spin polarizations.
zero andg, is maximal. But above a particular spin polarizatiog¥, the spectrum
It is instructive to compare these results with the case of aindergoes a qualitative change: the lowest Andreev level no
SFIS junction for which the ordinary reflection originates longer crosses the Fermi level, as shown in Fig).3
from the potential barrier of the insulating layérAt the To understand this crossover, we calculate the supercon-
usual level of approximation, a SFIS junction is described byductive phase differencgg corresponding to a zero-energy
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FIG. 3. Spectrum of a short SFS junction for
increasing spin polarizationsy=Eg,/Er with
ked=10. The thick solid lines correspond to the
spectrum obtained by solving E¢). The thin
lines represent the_corresponding quasiclassical
estimates witha=(v1+7-v1-7)k:d. We have
chosenA/EL=1078,

Andreev state. For sufficiently small spin polarization >10, no gap opens at the Fermi level for polarizations

<0.2, it is always defined and given by smaller thany*=0.94.
Xo=m+AKZg,d=m+o(N1+7-V1-nked, (17) IIl. JOSEPHSON CURRENT

but close to the half-metal casg=1, the eigenvalue equa-

tion (5) leads to In this section, we obtain the Josephson current through a

clean short SFS junction faarbitrary large spin polariza-
sin(\;’Ede)sin(V’mde) tions In particular, we study how the incomplete Andreev
22(1- ) g (18 reflection induced by the ferromagnet affects the current. For
n<1, ordinary reflection is negligible and the current is
which has two solutions fory< 7* and no solution forp  given by the usual quasiclassical expression. In the case of a
> 7~ half-metal =1, the current vanishes due to the complete
Figure 4 shows that the critical polarizatioft depends suppression of the Andreev reflection. We study the cross-
on the lengthd of the ferromagnet in a very peculiar way. over between these two limits by calculating the current from
For ked< 3, the Andreev spectrum has always two states athe spectrum obtained in the previous section.
the Fermi level. Fokzd> 3, »* becomes smaller than 1. For
spin polarizations above the critical valug, the Andreev A. Josephson current
spectrum has now a gap at the Fermi level. In the next sec-
tion, we will study how this gap affects the Josephson cur-
rent. Even more strikingly, when the lengthincreases, the 2e 90
gap at the Fermi level alternatively closes and reopens: one I(x) = P (19
has an alternance between regions wjth<<1 (such as in X
Fig. 3, a gap opens at the Fermi leveind regions with  where Q) (y) is the phase-dependent thermodynamic poten-
n*=1 (with no gap at the Fermi levelPractically, forked  tial. The potential can be calculated from the excitation spec-
trum by using the formuf®

1
0.98 UUU Q(T,,u,qb):—ZTfo g In(2 cosh%) +fdx|A(x)|2/g

CoSxg =~

The Josephson current is given by

0.96 +TrH,. (20
*
= 004 We restrict our attention to the short-junction case. For each
value of x, we solve Eq(5) numerically to obtain the two
0.92 spin-polarized Andreev levels. Then, we obtain numerically

the current using Eqg19) and (20).
09

B. Quasiclassical current

255 73 mk d12.5 15175 20 For a weak ferromagnet<1, the assumption of com-
# plete Andreev reflection is justified. Therefore, one may
FIG. 4. The zero-energy Andreev states disappear above a Critgompute_the current from the _spect_rt(ﬁ) (here ford< &)
cal polarizations* which depends ofiked. In Sec. Ill, we show that and obtain the so-called quasiclassical curfent

the current is very close to the quasiclassical estimate with discon- A Y+oa A Y+oa
tinuities when the Andreev level crosses the Fermi l¢kFal. 5a)] ch(Xva) =— E sin tan}‘{— Cos( )} .
for p<x*. For > »n*, the Josephson current is strongly modified $0 =21 2 2T 2

and has no discontinuity, since a gap opens at the Fermi [|[Eigs. (22)
5(b) and §. The minima of»* correspond to values of-d=(n

+1/2)m/2. Except for the presence of the phase shift
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0.5

= (0,0)

I(x)/1Io

FIG. 5. Zero-temperature current of a short SFS junction with
ked=10. (a) Even for a nearly complete spin polarizatia@=0.9,
the exact currengthick line) and the quasiclassical approximation T
(thin line) are identical(b) For =0.95, they are completly differ-
ent. The natural scale for the currentljs=2eA/#.

X

FIG. 6. Current-phase relationships f@d=10 and various spin
polarizations in the regimeg* < n<1.

’/_ ’/_
a=(V1+7-V1-nkd, (22) <1 whenked=10. For largeik.d, the width of this window
formula(22) is similar to the expression for the single-mode Scales as (kgd)>
current in a short SNS junctiot:?* In the T=0 case, the
current-phase relationship of a SNS junction has a sharp dis-
continuity aty= because the lowest Andreev level passes V. TRANSITION 0- 7 IN SMALL SFS JUNCTIONS
below the Fermi level while another Andreev level carrying

. . . In this section, we study the effect of exchange induced
an opposite current moves abd¥dn the SFS junction case, y 9

he d f the And level lifted. and thi ordinary reflection on the @r transition in the case of short
the degeneracy of the Andreev levels is lifted, and this cros unctions. In order to compare the stability of the zero-phase

ing occurs, respectively, at”=m+ca for each of the non- and of themr-phase states, we compute the energy
degenerate Andreev levels. Consequently, the current shows
aly,€) + oa
oo 218 £

two jumps at these phase differences, as shown in kay. 5
In the perturbative regimey<<0.2, the effective phase ap-

In Sec. Il D, we have obtained a sharp crossover betweeproach applies and one obtains
(i) a regime where the quasiclassical spectrum is only modi-
fied by gaps opening at=0 and y== and (ii) a regime
where the Andreev spectrum is strongly modified by the van-
ishing of the zero-energy states.

For spin polarizations € < 7*, the current is well ap- 7
proximated by the quasiclassical formula, Eg1), except cosa(y=m) =- (1 - E) + ry cosa. (25)
for phase differences close tp=0 and y=m. Near these
values, it turns out that the correction of the level energieSThus
induces opposite changes on the two individual currents. The
sum of these corrections cancels out and the total Josephson
current is unchanged. Consequently, although the spectrum is
modified, one may still use the quasiclassical form@p at
the currentfor any value ofy with a very good accuracy. n a
This statement is valid up to very high spin polarization, as a(y=m)=mt-—=sin_. (26)
shown in Fig. %a). In the limit <0.2, the effective phase V22
approach leads to The energie&(0,a) andE(w,a) are represented in Fig. 7.

sin x WhenE(y=m,a)>E(x=0,a), the zero-phase state is stable
I(x,a) = (1 —§>— lg@,a). (23)  and them-phase state is instable. The curves corresponding
sin to different values ofy are close to each other and differ
In conclusion, ordinary reflection induces only a very smallslightly only in the vicinity of a=0 anda=. All these
reduction of the current of ordey. curves intersect at the samernQtransition pointsa=/2 et

When 7* < 5<1, the current-phase relationship is com- a=3m/2. Therefore the Or transition is not modified by the
pletely modified and becomes nearly sinusoidal, as shown iardinary reflection induced by the ferromagnet.

Fig. 5b) (see also Fig. 6 The discontinuity in the current In the moderate- and strong-polarization regimes, numeri-
disappears because a gap opens at the Fermi level: there is @@ calculation of the energieB(x=0) and E(x=m) as a
Andreev level at zero energy. In conclusion, the crossovefunction ofa=Ak., ,]-(\1+77 V1- 77)de leads to the same
between the regime where the current is given by 4)  conclusion. The transition in a SFS junction at large ex-
and the regime with zero curremt>1 takes place in a nar- change field is robust to ordinary reflection induced by the
row window of spin polarizations, typically for 0.94n»  exchange field. This is contrary to what happens in the SFIS

E(X3€O =-A :S

o=%1

(24)

C. Crossover from =0 to =1

2
cosa(xy=0)= (1 —%2> + % cosa,

n a
a(y=0)=+—=cos_,
X 5 %%%
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x=0 X=r cogoa - 2¢.) = Cosy. (A1)

The exact position of an Andreev level may be written as

4 €”(x)=€5(x)+€i(x), wheree{(y) is small. Inserting this ex-
5 pression in Eqs(8) and(9) and using Eq(Al), we obtain,
E> oy for small 7,
¢ 7
coqd ca-2¢. + =COSy— —— CO0S
5<<T Pect 7 Ex> X~ g COSX
2 a\2 2
0,00
T @ +12<E> cos 2de—lcosa,
4\ A 8

FIG. 7. Zero-state energi(y=0,a) and w-state energyE(y
=r,a) for =0.1, 0.3, 0.5. The intersections of the different curves (A2)

remain in the vicinity ofa=/2 anda=3a/2. where we have introduced the notation

caset* The energyE(0,a)=-2A|cosa| of a SFIS junction is
independent of the transparendy whereasE(7r,a) evolves

gradually as the transparen&y is varied. As a result, the ) ) )
transition points strongly depend @ the domain of stabil- Expanding Eq.(A2) and using Eq.(Al), one obtains a
ity for the 7 phase shrinks around the valae = and even ~second-order equation for the deviatierty):

disappears aD=1. In a clean SFS junction, the stability

1
1E, = ——. (A3)
X \\"Az _ Eg

o\2 o
domain of thew phase remains unchanged because of the CosX(ﬂ) +sinxi
interplay between the two gaps gt 0 andy=. It is remi- Y X
niscent of the Josephson current robustness obtained in the 7 e\ 2
previous section. = E{COSX - 2<X0> cos Xgd + cosa} .

V. CONCLUSION s
For x=0 andyx=, the deviation is of order, whereas

We have obtained the phase dependent excitation spefor y==/2 it is proportional to7?. The gaps occur at the
trum of a clean one-channel SFS junctimn arbitrary spin  level crossings of the unperturbated spectreyy), at x=0
polarizations The present treatment takes into account theand y=7. They are defined by
ordinary reflection of electrons caused by the ferromagnet/

superconductor interface. We have shown that gaps open for &=1e(x=0 - € (x=0),
phase differenceg=0 andy= . These gaps depend both on
the spin polarizatiomy=E,,/Er and on the length of the fer- S.=ef(x=m - €% (x=m)|,

romagnet via the produétd. In spite of these strong modi- .
fications of the spectrum, the Josephson current and the st#th
bility of the = state are robust against the ordinary reflection

ol — a\2 1/2
due to the exchange field up to very large spin polarizations M = 1]{1 - 2( EO) cos Xgd + cosa}

7*. We obtain a sharp crossover betwg@na regime where Eo 2 A

the current is given by the quasiclassical theory éndthe

fully spin-polarized regime with zero current. We have ne- &x=m 7 €5 \? 12
glected the effect of the ferromagnet channel on the large T ) 1+2 -~/ cos Xed - cosa

superconducting reservoirs. This is fully supported in the
point-contact geometry for SNS or weakly spin-polarizedUsing

SFS junctions. For high spin polarizations, there is a possi-
bility that even a single channel leads also to a reduction of Eo=A sing‘ ,
the superconductivity. In this case, we expect that our results 2
still hold if one substitutes the values &fandd by effective
onesAq<A anddgs>d. a‘
E.=A|cosZ]|,
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A
8= " |sinked sinal,
APPENDIX 2
In a first approximation, the spectrum of the clean SFS
junction is obtained by a shifi=2E.d/ v of the phase and S = U—A|cosde sinal. (A4)
it is the solution of the eigenvalue equation T2
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