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Direct Measurement of the Phase-Coherence Length in a GaAs=GaAlAs Square Network
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The low temperature magnetoconductance of a large array of quantum coherent loops exhibits
Altshuler-Aronov-Spivak oscillations with a periodicity corresponding to 1=2 flux quantum per loop.
We show that the measurement of the harmonics content provides an accurate way to determine the
electron phase-coherence length L’ in units of the lattice length with no adjustable parameters. We use
this method to determine L’ in a square network realized from a 2D electron gas in a GaAs=GaAlAs
heterojunction, with only a few conducting channels. The temperature dependence follows a power law
T�1=3 from 1.3 K to 25 mK with no saturation, as expected for 1D diffusive electronic motion and
electron-electron scattering as the main decoherence mechanism.
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The characteristic scale on which quantum interfer-
ence can occur in a conductor, the phase-coherence length
L’, is the key parameter of quantum transport. In par-
ticular, the dependence of L’ on temperature can dis-
criminate between the various scattering mechanisms
which limit phase coherence: electron-electron (e-e),
electron-phonon, or electron-magnetic impurity interac-
tions. Interference on the scale of L’ gives rise to two
different types of contributions to the conductance in a
transport experiment. Some are sample specific and de-
pend on the particular disorder configuration. These are
conductance fluctuations (magnetofingerprints) and the
�0 periodic Aharonov-Bohm (AB) oscillations (�0 �
h=e is the flux quantum). Their amplitudes are governed
both by L’ and the thermal length LT , in general smaller
than L’. This makes an accurate determination of L’
difficult [1–3]. The second type of contribution, called
the weak localization (WL) correction, is obtained after
ensemble averaging of quantum interferences on many
configurations of disorder. It originates from interferences
between time reversed electronic trajectories, which are
the only ones surviving the disorder average. It is also
observed in samples of size L� �L’; LT� and depends
only on L’ since it involves trajectories at the same
energy. Manifestations of WL are the magnetoconduc-
tance (MC) of large connex samples [1–3] and the
Altshuler-Aronov-Spivak (AAS) �0=2 periodic oscilla-
tions resulting from the ensemble average of AB oscilla-
tions in a long cylinder or large arrays of connected phase
coherent rings [4–6]. The WL provides thus in general a
much more direct measurement of L’ than sample spe-
cific corrections.

The analysis of the MC in 1D diffusive metallic wires
(with transverse dimensions smaller than L’) has led to
accurate determinations of L’. It was found that the
dominant phase breaking mechanism at very low tem-
perature, in the absence of magnetic impurities, is due to
04=93(24)=246804(4)$22.50 24680
e-e scattering and is well described by the Altshuler-
Aronov-Khmelnitsky (AAK) theory [1,7] yielding L’ /

T�1=3 with no saturation down to 40 mK [2,3]. Such a
remarkable agreement between theory and experiment
has not been established for semiconducting wires, where
most WL experiments have been performed only above
0.2 K or with insufficient ensemble averaging [8–11]. It is,
however, essential to check the validity of the AAK
theory for these systems which correspond to radically
different physical parameters: fewer conducting channels
and larger screening lengths. In this Letter we present MC
data down to 25 mK of networks fabricated from a
GaAs=GaAlAs 2D electron gas (2DEG), which contain
106 square loops in the diffusive transport regime, and
determine L’ without adjustable parameters from the
analysis of the AAS oscillations (Fig. 1). Following
[12,13], we explain how to calculate the harmonics con-
tent of these oscillations and show that it depends only on
L=L’ where L is the circumference of the elementary
loop. It is then possible to determine L’ and its tempera-
ture dependence exclusively from geometrical parameters
of the network. This new method of determinating L’ is
especially interesting in these 2DEG wires for which
basic transport parameters such as the electron density
and wire width (W) are not straightforwardly deter-
mined, unlike metals.

Moreover, once L’ is determined, we deduce from the
analysis of the high field positive MC the elastic mean
free path (le), W, and make a detailed comparison with
theoretical predictions of the AAK theory on dephasing
by e-e interactions. We find a very good quantitative
agreement in the regime, never explored before, of very
few conducting channels.

In the weakly disordered diffusive regime (kFle � 1),
the WL correction is directly related to the Cooperon,
which can be computed from the time integrated return
probability Pc�~r; ~r� for a diffusive electron. In a cylinder
4-1  2004 The American Physical Society
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FIG. 1. (a) Conductance versus magnetic field between 25 and
220 mK. (b) Fourier transform of the MC (after substraction of
the envelope) for different temperatures. Left (right) inset:
Some orbits contributing to the first (second) harmonic.
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or an array of connected loops the contribution to the
Cooperon of trajectories enlacing at least one loop oscil-
lates with a flux periodicity of �0=2 giving rise to the
AAS oscillations. A systematic way of calculating WL in
a mesoscopic network of diffusive wires was derived in
[12]. More recently [13], a relation was found between the
conductivity WL correction (divided by e2=h) and the
spectral determinant S��� � det����� of the Laplace
operator � defined on the network.
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whereVol is the total volume and � � 1=L2
’. Equation (1)

assumes an exponential relaxation of phase coherence.
This approach, which is meaningful only for regular
networks, is particularly efficient because S��� can be
computed systematically for any given network in terms
of the determinant of a finite size matrix encoding the
network’s characteristics (topology, length of the wires,
magnetic flux). It can also be shown that the WL can be
expressed, in the small L’ limit, as a trace expansion over
periodic orbits, C,
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where V (B), is the total number of vertices (bonds). ~C is
the primitive orbit related to C. We explain briefly this
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formula, demonstrated in [14] and discussed in detail in
[15]. Each orbit contributes to the MC with a phase factor
which depends on the enclosed flux: ��C� � 4���C�=�0.
It is also characterized by its length l�C� and by a geo-
metrical weight ��C�. In the case of a square lattice of
periodicity a, the periodically oscillating conductance
can be decomposed in Fourier space as a sum of harmon-
ics of the fundamental periodicity corresponding to�0=2
per elementary cell. The first terms of this expansion in
x � e�2a=L’ read
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Here W is the section of the wire, � � 4��=�0, and � is
the flux per elementary cell. The amplitude of the nth
harmonics is evaluated by counting the paths enclosing n
fluxes �. The counting is rapidly cumbersome (156 orbits
are involved in the last term), but the crucial point is that
the coefficient of each term depends only on the lattice
geometry.

More generally, the WL correction can be obtained for
all values of L’=a from the numerical computation of the
determinant in Eq. (1). The numerical fast Fourier trans-
form of the computed MC yields the ratio R12 of the two
first harmonics as a function of L’=a (Fig. 2, inset). It
appears that the small orbit expansion (2) is a good
approximation up to L’=a � 2. In any case the ratio of
two harmonics is completely determined by L’=a and
provides a method for a direct evaluation of L’ without
any adjustable parameter. The square lattice is particu-
larly appropriate for such a determination of L’ due to its
large harmonics content: the second harmonic is domi-
nated by orbits of length 6a instead of 8a for a statistical
ensemble of single rings or a necklace of identical rings,
for example.

We now use this method to determine the phase-
coherence length of square networks etched in a 2DEG
of a GaAs=GaAlAs heterostructure. The networks consist
of 106 square loops of side a � 1 !m and nominal width
W0 � 0:5 !m and cover a total area of 1 mm2. A gold
gate deposited 100 nm above the 2DEG offers the possi-
bility to change the number of electrons in the network.
Measurements were done on three networks (A, B with
gate, C without), giving the same results. Except when
specified, figures show the data for sample A. We have
measured the MC up to 4.5 T between 25 mK and 1.3 K,
using a standard lock-in technique (ac current of 1 nA at
30 Hz). The samples were, in general, strongly depleted at
low temperature because of the etching. The intrinsic
electron density of the 2DEG, ne � 4:4
 1015 m�2,
was recovered after illuminating the samples during
4-2



FIG. 3. High field MC, the continuous lines are the experi-
mental data, and the dots are the fits with Eq. (4). Parameters of
the fits are le and W at 30 mK, and L’ and le at 1.3 K.
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FIG. 2 (color online). Inset: Relation between L’=a and the
ratio R12 of the two first harmonics on a semilog scale. The
continuous line comes from the numerical calculation of S���.
The dashed line is deduced from the expansion (2). The open
circles are the experimental values of R12 from which L’ is
determined. Main panel: L’ versus temperature on a log-log
scale obtained from R12 for samples A, B, and C. The fit
(dashed line) yields the power law L’ / T�0:36. The dark
circles and squares are obtained from the fit of the envelope.
The continuous line is L’ from the AAK theory (for sample A).
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several minutes at 4.2 K. This density was determined
from Shubnikov–de Haas oscillations visible above 1 T.
Because of depletion after etching of the 2DEG, it is
difficult to estimate the real width of the wires (W) and le.

At low magnetic field [Fig. 1(a)], the MC exhibit large
AAS oscillations with a period 12.6 G corresponding to a
flux �0=2 in a square cell of area a2. The oscillations are
clearly not purely sinusoidal. At the lowest temperature,
25 mK, three harmonics are visible in the Fourier spec-
trum of the MC [Fig. 1(b)]. Moreover, as shown in Fig. 3
which represents the MC for a wider range of field, the
oscillations disappear above 60 G but the WL magneto-
conductance due to the penetration of the field through
the finite width of the wires constituting the network is
still clearly visible. At high temperature, above 400 mK,
the AAS oscillations disappear even at low field. Only the
positive MC remains with a smaller amplitude. In
sample B, the same experiments for different gate volt-
ages were also performed.

We first concentrate on the AAS oscillations [Fig. 1(a)].
The Fourier spectrum of the MC exhibits a series of
peaks corresponding to successive harmonics of the
�0=2 periodicity. The finite width of the peaks
[Fig. 1(b)] is due to the penetration of the magnetic field
in the wires which damps the AAS oscillations at high
field. It can be shown that this broadening does not affect
the integral of the peak. A first rough analysis shows that
the ratio R12 of integrated peaks of the two first harmon-
ics behaves like R12 � exp�T1=3�. We now use the theory
described above to quantitatively determine L’ via the
relation between L’=a and R12. We deduce its tempera-
ture dependence between 25 and 250 mK as shown in
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Fig. 2. We find that L’ follows a power law T�$, where
$ � 0:36� 0:05. The coherence length reaches almost
3 !m at 25 mK, and there is no sign of saturation.

Once L’ is determined, the sample parameters (W, le)
can be deduced from theWL envelope. The magnetic field
appears as an additional effective phase breaking rate for
the time reversed trajectories responsible for the WL
leading to an effective L’ given by [16]
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where Weff � W
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p
is a renormalized width

which appears in the WL correction for a semiballistic
wire (le � W) due to the phenomenon of flux cancella-
tion. The coefficient C1 depends on the specific boundary
conditions. The samples under consideration are close to
the case of specular boundary scattering [8] for which
C1 � 9:5. The MC envelope, given by h���� �

0; L’����i, can be analytically computed for the square
lattice geometry and is given by
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where K�x� is a complete elliptic integral. This expression
is used in a two-parameter (W, �D) fit of ��=�D �
�G=GD where �D and GD are the Drude conductivity
and conductance. Since kF is determined independently
from Shubnikov–de Haas measurements, �D � kFle de-
termines le. For samples A=B=C, W � 170=270=230 nm
and le � 220=250=360 nm, independent of temperature
as expected. This also shows that the networks are indeed
in the diffusive regime. In sample A the number of
transverse channels per wire is M � kFW=� � 9, and
the number of effective conducting channels on the scale
of a is only Meff � Mle=a� 2. Results for samples B and
C are similar.

At higher temperature where no AAS oscillations are
visible, we can nevertheless deduce L’ and le by fitting
the MC, knowing the temperature independent values of
4-3
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FIG. 4 (color online). Comparison between experiment (sym-
bols) and theory (continuous line) for the oscillating part of the
conductance for sample A (�) (GD � 3:7
 10�5 S), sample B
(�) (GD � 5
 10�6 S) with Vg � �0:15 V corresponding to
W � 240 nm and le � 170 nm, and sample C (�) (GD � 2:6

10�5 S) (shifted down for visibility). The only adjustable
parameter is the amplitude of the oscillations.
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W and GD (Fig. 3). Thus a quantitative comparison of L’
with the theoretical prediction of AAK [7,17] L’ ����
2

p
�D

2m�W
�kBT

�1=3 written for a 2DEG wire is possible. This
theory applies to diffusive metallic wires with a large
number of conducting channels in a limit where e-e
interactions are treated perturbatively. We find a very
good agreement (see Fig. 2) which is remarkable for
two reasons: (i) we are confronted here with a small
number of conducting channels where strong interaction
effects could be expected, and (ii) the result of AAK was
not extended to network geometry. Recently it was pre-
dicted in [18] that L’ extracted from the AB or AAS
oscillations in a single ring of perimeter L should behave
like L’ / �LT��1=2 corresponding to R12 � expL3=2T1=2.
This behavior is not observed in our experiment.

For sample B gate voltages between �0:3 and 0:3 V
changed the resistance from 30 to 400 k". A good filter-
ing of the gate voltage line is needed to avoid saturation of
L’. Within our experimental accuracy, we find that L’ is
not changed and still varies as T�1=3. We estimated for
each gate voltage W and le. When the gate voltage varies
between 0:15 and �0:15 V, W is unchanged but le de-
creases by a factor of 1:5 and ne by 30%; GD decreases by
a factor of 5. This shows that the effect of the gate is
mainly to disconnect bonds of the network.

As a consistency check we have computed numerically
the oscillating part of the MC with formulas (1) and (3)
using the value of Weff determined above from the WL
envelope of the MC curves. We find that this value also
precisely describes the damping of the AAS oscillations,
if the oscillations amplitude is multiplied by a factor
ranging from 1.6 to 2 depending on the gate voltage.
This can be explained by the existence of broken bonds
24680
in the network which influences envelope and oscillations
differently [19]. We obtain a very good agreement be-
tween theory and experiments (Fig. 4).

In conclusion, we have shown that magnetoconduc-
tance experiments in GaAs=GaAlAs networks can be
described very accurately by the diagrammatic theory
of quantum transport in diffusive networks. It is remark-
able that this agreement is achieved in a limit where the
dimensionless conductance on the scale of the period of
the network, Mle=a, is of the order 1, and down to
temperatures corresponding to L’ � LT , i.e., close to
the limit of validity of AAK theory. In contrast, metallic
wires deep in the diffusive regime have a number of
conducting channels of order 1000 and L’ � LT is al-
ways fulfilled. Moreover, we extracted from the AAS
oscillations the temperature dependence of the phase-
coherence length L’ / T�1=3 that agrees with AAK the-
ory down to 25 mK.
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Deblock and B. Reulet for fruitful discussions.
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