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Aharonov–Bohm cages in the GaAlAs=GaAs system
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Abstract

Aharonov–Bohm oscillations have been observed in a lattice formed by a two-dimensional rhombus tiling. This observation
is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have
investigated the low-temperature magnetotransport of theT3 lattice realized in the GaAlAs=GaAs system. Using an additional
electrostatic gate, we have studied the in7uence of the channel number on the oscillations amplitude. Finally, the role of the
disorder on the strength of the localization is theoretically discussed. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The spectral properties of an electron in a periodic
lattice in the presence of a magnetic <eld are of par-
ticular interest. Indeed, the frustration between the
spatial periodicity and the one induced by the mag-
netic <eld gives rise to spectacular energy spectra
versus the reduced 7ux f = �=�0, where � is the
magnetic 7ux per elementary cell and �0 is the
7ux quantum. A well-known example is the Hof-
stadter butter7y [1]. Recently, the study of a bi-
partite two-dimensional rhombus tiling, named T3,
(shown in Fig. 1) has attracted a lot of attention
[2]. For f = 1

2 , its energy spectrum is reduced to
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three degenerate discrete levels (see Fig. 2). The
whole lattice is then similar to a unique super-atom
with localized electrons. This behaviour is very dif-
ferent from the square lattice one where for any ra-
tional value of the reduced 7ux the energy spectrum
is continuous. This localization for the T3 lattice
can be easily understood in terms of Aharonov–
Bohm (AB) eHect. Indeed, in order to propagate
through the lattice, an electron must travel through
AB loops. For f = 1

2 interferences are destructive
and the electron is then con<ned in a so-called AB
cage. This tight-binding calculation has received
an experimental con<rmation in the temperature
dependence of the critical current of a superconduct-
ing network in the T3 geometry. In addition, the un-
usual nature of the state at half-7ux quantum has been
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Fig. 1. (Top):T3 lattice. Shaded area corresponds to an elementary
cell; (Bottom): electron microscope view of the aluminium mask
used to etch the 2DEG. The nominal width of the wires de<ning
the network is 0:4 �m whereas their length is about 1 �m.

revealed by a strong reduction of the critical cur-
rent and by a very disordered vortex pattern through
decoration experiments [3,4].
The <rst experimental evidence of AB cages in

a normal metal network tailored in a high-mobility
two-dimensional electron gas (2DEG) has recently
been reported [5]. The low-temperature magnetore-
sistance measurements show clear h=e oscillations in
arrays of 2500 cells. Experiments performed on square
lattices of similar size do not show such a behaviour.
The temperature dependence of the h=e peak ampli-
tude of the Fourier transform for both the T3 lattice
and the single rhombus have been compared. For a
single loop the amplitude of the AB signal is expected
to follow a T−1=2 law as long as the size of the loop L is
smaller than the phase coherence length L�, because of

Fig. 2. Energy spectrum of a T3 lattice versus reduced 7ux. The
energy scale is chosen so that the spectrum on a square lattice
with the same hopping amplitude is the interval [− 4; 4].

temperature averaging. When the temperature is such
that L¿L� the AB signal falls down exponentially
[6]. Thus, the size of a cage being larger than that of a
single loop, one expects a cutoH temperature sig-
ni<cantly smaller for the T3 as compared to the
one for a single rhombus. The experimental re-
sults show that this critical temperature is around
1 K for a rhombus whereas it is below 100 mK for
the T3. If one assumes a T−1=3 temperature de-
pendence for L� in GaAlAs=GaAs 1D systems [7],
the ratio of the measured critical lengths is 2:7, in
good agreement with the geometrical dimensions
yielding a ratio of 3. More strikingly, at high mag-
netic <eld, h=2e oscillations appear whose amplitude
can be much higher than the fundamental period.
Such an amplitude dismisses a simple interpretation
in terms of harmonics generation. Moreover, the
temperature dependence of the h=2e oscillations is
similar to that of the h=e one. This also indicates
that the characteristic lengths associated with the
two periodicities are alike and rules out any in-
terpretation in terms of harmonics. One may also
think of Aronov–Altshuler–Spivak (AAS) oscilla-
tions when dealing with an h=2e signal. But, due
to the aspect ratio of the sample, the AAS signal
should vanish for high magnetic <elds. Thus, any
explanation in terms of AAS would imply that a high
magnetic <eld induces the squeezing of the wires
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leading to an array of one-dimensional leads. A sec-
ond explanation for the frequency doubling could
be the electron–electron interactions which could
induce charge doubling. Up to now the origin of this
h=2e peak at high magnetic <elds remains unclear.
In the present paper we report on new experiments

on the cage eHect. These experiments in an other type
of sample con<rm both the existence of the cage eHects
and the systematic presence of the frequency doubling
for high magnetic <elds. We have realizedT3 lattices
on a GaAlAs=GaAs heterostructure on which elec-
trostatics gates have been deposited in order to con-
trol the number of channels per wire. The fabrication
process and the experimental results concerning these
devices are introduced in Section 2. Finally, in Sec-
tion 3 we present theoretical calculations concerning
the in7uence of the disorder on the cage eHect.

2. Cage e�ect versus the number of channels

This work is carried out on high-mobility 2DEG
heterojunction material with an initial mobility
of 3 × 106 cm2 V−1 s−1 and a carrier density of
3:7 × 1011 cm−2 which give a Fermi wavelength

F = 41 nm and an elastic mean free path le = 12 �m.
Fig. 3 shows the experimental procedure to real-
ize the electrostatic gate. A 200 nm thick insulator
organic resist is <rst deposited on the top of the
sample. We use then electron beam lithography and
a lift-oH technique to pattern the T3 lattice with an
aluminium mask (see Fig. 1). Reactive ion etching re-
moves the resist from the unprotected regions. Then,
etching using Argon ions transfers the pattern into the
2DEG. Due to the lateral depletion resulting from the
etching process, the eHective electrical width is con-
siderably smaller than the wire width mask. The metal
of the gate is then evaporated onto the whole surface.
As a result, the gate is in intimate contact with the
regions where the 2DEG has been destroyed whereas
the thick resist layer considerably reduces the in7u-
ence of the gate on the gas beneath the wires. As a
consequence, using this approach, we reduce the gate
action on the electron density and favour a pinching
of the wires making the lattice. In Fig. 4, we present
the magnetoresistance of the T3 network for several
gate voltage values. The measurements are performed
at 50 mK. From the Shubnikov–de-Haas oscillations

Fig. 3. Step by step process for the realization of the gated samples.

Fig. 4. Magnetoresistance of a T3 lattice versus the gate voltage
showing Shubnikov–de-Haas oscillations.

we can extract the electron density versus the gate
voltage. In the low magnetic <eld regime we clearly
observe large features which depend on the gate volt-
age (indicated by arrows in Fig. 5). These features
appear already at a temperature of 4 K and are almost
temperature independent down to 50 mK, indicating a
classical eHect. In 2DEG systems, the mean free path
at low-temperature can be much larger than the width
of the wire and the electrons are frequently scattered
by the boundaries. Using a quasi-classical descrip-
tion, Ziman [8] considers the scattering of electrons
by a rough boundary. The conclusions agree with our
intuitive expectations: when the wavelength of the
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Fig. 5. Same as Fig. 4 but in the low magnetic <eld range
dominated by the classical boundary scattering eHects.

incident electron is much smaller than the average
boundary roughness, the electron is strongly scat-
tered in all directions. In the opposite case, when
the Fermi wavelength is much larger, the incident
electron undergoes specular re7ections. These scat-
terings at the boundaries [9] lead naturally to the
concept of the boundary scattering length, lb, which
is the average distance an electron can travel along a
wire before a diHusive scattering event takes place.
Then, the eHective mean free path leH is such that
1=leH =1=ltrans +1=lb and, as long as ltrans�lb, bound-
ary scattering dominates the momentum relaxation.
The boundary scattering rate can be “tuned” using a
magnetic <eld perpendicular to the wire. At zero or
low magnetic <eld, electrons with a large component
of momentum parallel to the boundaries contribute
signi<cantly to the conductivity. However, as the
magnetic <eld increases, more and more electrons are
forced to interact with the edges and random scatter-
ing reduces the eHective mean free path leH . Thus,
the resistivity increases and subsequently saturates at
some maximum value when the cyclotron radius is
approximatively twice the wire width [9]:

W = 0:55× rc(Bmax) = 0:55×
√
2�˜2ns
eBmax

: (1)

Any further increase of the magnetic <eld will now
lead to a drop of the resistivity since the probability
for an electron to be backscattered by the edges is re-
duced. In Fig. 5 we observe three maxima correspond-
ing to the three magnetic <eld values denoted B(1)max,
B(2)max and B

(3)
max. These maxima correspond to three

diHerent widths we can identify in our samples: the
width of the wires connecting the nodes, the diameter
of the cavities formed at the six-fold coordinated and
the three-fold coordinated lattice sites. Using Eq. (1)
we can deduce the real dimension of the electron path.
The channel number can be deduced from the com-
parison between the Fermi wavelength and the wire
width (N =W (3)=(
F=2)).
These results are reported in Table 1.
The identi<cation of W (3) to the wire width gives

reasonable numerical values. Nevertheless, the values
obtained for the cavities diameters are overestimated,
which is not surprising since this wire model is not
really adapted to the particular shape of the junctions.
The unexpected frequency doubling leads us to

de<ne two magnetic <eld regimes: a low Aeld regime
(between 0:4 and 1:2 T) where we observe only h=e
oscillations and a high Aeld regime (from 1:2 to 2 T)
where the h=2e oscillations appear in addition to the
h=e ones. We substract a polynomial <t of the global
magnetoresistance to the experimental points in order
to extract the oscillations. This resulting signal (see
Fig. 6) is then Fourier transformed. Let us now dis-
cuss the gate voltage in7uence on the oscillations in
both regimes which is reported in Figs. 7 and 8, where
we have plotted the Fourier transform peak magnitude
against the channel number. In the low <eld regime
the AB amplitude clearly increases with decreasing
the electrical wire width. This is in agreement with
the work of BRuttiker et al. [10] on a simple loop.
Essentially, their calculation shows that if N is the
channel number, the h=e signal results from N 2

uncorrelated contributions whose stochastic averag-
ing gives rise to a decrease of the AB oscillation
amplitude with N . Note that in our experiments the
amplitude of the Fourier transform falls down at a
critical gate voltage (about 0 V corresponding to a
channel number close to 2). This may be due to the
wire pinch-oH induced by the gate. As a result, the
cutting of some wires supresses the cage eHect and
consequently reduces the h=e signal. In the high <eld
regime we observe a diHerent behaviour between the
h=e and the h=2e periods. The h=e amplitude decreases
monotonously with the reduction of the channel num-
ber. On the other hand, the h=2e oscillations seem to
have a constant magnitude versus the gate voltage.
This fact suggests a diHerent mechanism to explain
the two periodicities in this high <eld regime. More
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Table 1

Gate voltage (V) ns (1011 cm−2) B(1)max (T) W (1) (�m) B(2)max (T) W (2) (�m) B(3)max (T) W (3) (�m) N

Vg = 0:2 1.48 0.052 0.67 0.159 0.219 0.274 0.127 3
Vg = 0:15 1.32 0.052 0.63 0.154 0.219 0.268 0.123 3
Vg = 0:1 1.17 0.056 0.56 0.140 0.221 0.262 0.118 3
Vg = 0:05 0.9 Hard to locate 0.137 0.199 0.270 0.101 2
Vg = 0 0.83 Hard to locate 0.122 0.213 0.256 0.101 2

Fig. 6. h=e and h=2e oscillations after substracting the background.

surprisingly, the h=e signal itself behaves in an oppo-
site manner in the two regimes: whereas, as discussed
above, the AB amplitude at low <eld has the expected
channel number dependence, in the high <eld regime
the h=e signal increases with N . This leads us to
raise the hypothesis that we are dealing with diHerent
physical phenomena in the twomagnetic <eld regimes.
Up to now the origin of the h=2e peak at high mag-
netic <elds and, more, the <eld strength eHect on the
h=e peak amplitude, remain unclear.
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Fig. 7. Variation of the h=e peak amplitude of the Fourier transform
versus the channel number for the low magnetic Aeld regime.
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Fig. 8. Variation of the h=e and h=2e peak amplitudes of the Fourier
transform versus the channel number for the high magnetic Aeld
regime.

3. The e�ect of disorder

In this section, we discuss the in7uence of an elastic
disorder on the periodicity of the AB oscillations in
the T3 lattice. In order to simplify this analysis, we
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Fig. 9. A piece of the square lattice (left) and of the T3 network
(right). Black (respectively, grey) dots represent the connections
to the input (respectively, output) channels. The central black dot
is the input channel chosen for the bulk injection.

consider that there exists only one conduction channel.
Of course this hypothesis is somehow unrealistic but
it allows us to get a partial answer to this problem.
The technical details can be found in Ref. [11].
From a theoretical point of view, there are several

ways to introduce disorder in a system. For instance,
one can consider a random scattering matrix on each
bond of the network or at each node. We can also put
some additional dead-end bonds of random lengths
to mimick the dephasing due to impurities. Here, we
adopt another point of view by changing the length
of each quantum path. One way to do this practically,
is to make a random modulation Sl of each bond of
length l without modifying the phase factor due to
the magnetic <eld. Indeed, since each bond is consid-
ered as strictly one-dimensional, the circulation of the
vector potential along one link is not aHected by re-
7ections of the wavepacket on this link. Thus, in the
Landauer-like transmission formalism that we have
used, we only include these length 7uctuations in the
quantity kl which is the main parameter of our study
[11]. In the following, we focus on the transmission
properties of a piece of theT3 lattice and we compare
it to a piece of the square lattice (see Fig. 9).
In the pure case (Sl = 0) the transmission coeT-

cient T depends on the wave vector k of the incoming
wave function and on the reduced 7ux f. We have
displayed in Fig. 10, the averaged transmission coeT-
cient for kl∈ [0; 2�]. One clearly observes some peaks
for rational f (extended Bloch-like eigenstates) rem-
iniscent of the butter7y-like structure of the energy
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Fig. 10. Averaged transmission coeTcient as a function of the re-
duced 7ux for the square lattice (square) and for the T3 network
(triangle). Inset: averaged transmission coeTcient for the T3 net-
work with a single input channel in the bulk of the network.

spectrum. Due to the existence of the AB cages, the
transmission coeTcient is minimum at f = 1

2 for the
T3 network but it does not strictly vanish. This is due
to the existence of dispersive edges states [12] that
are able to carry current even for f = 1

2 . Neverthe-
less, when one injects the current in the bulk of the
sample, we obtain T = 0 for f= 1

2 as expected. Note
that for both systems, the signal is anharmonic but is
periodic with period �0 leading to a h=e periodicity
for the magneto-resistance.
The main question is to know how this periodicity

is modi<ed when we introduce the disorder. It is clear
that if the disorder is very strong (kSl � �), there
is no phase coherent transmission and we expect a
vanishing transmission after averaging over disorder.
Consequently, there might be interesting phenomenon
for weak enough disorder. We emphasize that the
notion of weak and strong disorder is related to the
product kSl and thus depends on k. Note that this
way to model a static disorder is not expected to
capture all the features of experimental data. For in-
stance, it yields an eHective disorder which increases
with the Fermi energy, but this eHect could well be
completely compensated by the energy dependence of
the impurity scattering cross-section in real systems.
We have shown in Fig. 11 the eHect of disorder on the
transmission coeTcient as a function of the magnetic
7ux. It is clearly seen that for the square network, the
periodicity is no longer �0 but �0=2. This new
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Fig. 11. Transmission coeTcient averaged over 50 con<gurations
of disorder for kl = �=3 and kSl = 1:47 as a function of the
reduced 7ux.

periodicity is simply due to phase coherent pairs
of time-reversed trajectories according to the
weak-localization picture. The most striking fea-
ture is that for the T3 lattice, the transmission
coeTcient remains �0-periodic with a large am-
plitude. This strongly suggests that the cage ef-
fect (which locks the phase of the oscillations)
survives for this strength of disorder. Physically, it
means that a strong dephasing is required to destroy
the completely destructive quantum interferences res-
ponsible of the AB cages. In addition, note that, for
this energy, the signal of the T3 lattice transmission
coeTcient is about 10 times larger than the one of
the square network. In Ref. [12] we report on other
energy of the incoming wavepacket where we <nd
always the same type of feature.

4. Conclusions

Localization phenomenon induced by the magnetic
<eld on the T3 topology has been con<rmed in the
GaAlAs=GaAs system. The frequency doubling in the
high magnetic <eld regime is systematically observed
and displays a diHerent behaviour versus the chan-
nel number compared to the fundamental period. The
theoretical predictions of the eHect of disorder mo-
tivate the investigation of such networks in metallic
systems.
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