
rule out this possibility. In early reports on CDW dynamics,
NDR has also been observed in NbSe3 crystals at low
temperatures (45 K) accompanied by unusually large 1/f
noise [17]. At even lower temperatures, these samples show
switching events near threshold. The measurements [17] are
performed with voltage probes spaced at macroscopic dis-
tances (L4 100 mm). ForL > 5 mm,we have never seenNDR
nor switching events in our TaS3 crystals in the temperature
range studied (T > 90 K).

We believe that the N(D)R we observe, originates from
the response to local CDW deformations. Assuming that
there are a few strong pinning centers or line dislocations in
our crystal, strong deformations in the strain profile may be
present around these regions. Strain leads to a shift of the
chemical potential and this shift can be either up or down
depending on the direction of sliding. For a semiconducting
CDW with the Fermi level in the middle of the gap, a shift of
the chemical potential leads to an increase of quasi-particles
(either electrons or holes) and consequently to a decrease of
the quasi-particle resistance. Such a resistance decrease may
then produce regions with NDR as argued previously by
Latyshev et al. [18] to explain NDR in their data on partly
irradiated macroscopic samples. However, this reasoning
cannot be used to explain a negative resistance: the decrease
of the quasi-particle resistance cannot change the sign of the
resistance.Most likely, nonequilibrium processes between the
CDW and the quasi-particles must also play a role in this new
phenomenon as well. No theory is available as yet.
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Mesoscopic physics on graphs

G Montambaux

Abstract. This report is a summary of recent work on the
properties of phase coherent diffusive conductors, especially in
the geometry of networks Ð also called graphs Ð made of
quasi-1D diffusive wires. These properties are written as a
function of the spectral determinant of the diffusion equation
(the product of its eigenvalues). For a network with N nodes,
this spectral determinant is related to the determinant of an
N�N matrix which describes the connectivity of the network.
I also consider the transmission through networks made of 1D
ballistic wires and show how the transmission coefficient can be
written in terms of an N�N matrix very similar to the above
one. Finally I present a few considerations on the relation
between the magnetism of noninteracting systems and the
magnetism of interacting diffusive systems.

1. Return probability

Transport and thermodynamic properties of phase coherent
disordered conductors can be described in a simple unified
way: all can be related to the classical return probability P�t�
for a diffusive particle. I consider diffusive conductors, for
which the mean free path le is much larger than the distance
between electrons: kFle 4 1. The return probability has two
components, a purely classical one (diffuson) and an inter-
ference termwhich results from interferences between pairs of
time-reversed trajectories (Cooperon). The classical term is
solution of the differential equation

�ÿioÿDD�Pcl�r; r0;o� � d�rÿ r0� ; �1�

and the interference term is solution of the equation [1]:

gÿ ioÿD HH� 2ieA

�hc

� �2
" #

Pint�r; r0;o� � d�rÿ r0� ; �2�

whose solution has to be taken at r0 � r. D is the diffusion
coefficient. The scattering rate g � 1=tf � D=L2

f describes
the breaking of phase coherence. Lf is the phase coherence
length and tf is the phase coherence time. Finally, the space
integrated (dimensionless) return probability is defined as

P�t� �
�
P�r; r; t� dr :

The weak-localization correction to the conductance can be
written as [1]

Ds � ÿs e
2D

p�hO

�1
0

Pint�t� exp�ÿgt� ÿ exp
ÿt
te

� �� �
dt ; �3�

O is the volume and s is the spin degeneracy. The contribution
of the return probability is integrated between te, the smallest
time for diffusion, and the phase coherence time tf � 1=g.
Similarly, the variance of the conductance fluctuations at
T � 0 K is given by
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hds2i � 3

b
s
e2D

p�hO

� �2
�
�1
0

Pcl�t� � Pint�t�� � exp�ÿgt� ÿ exp
ÿt
te

� �� �
t dt ;

�4�
b � 1 in the absence of a magnetic field; b � 2 if the field
completely breaks the time reversal symmetry. The interac-
tion contribution to the average magnetization of a disor-
dered electron gas can also be written as a function of field-
dependent part of the return probability. For a screened
interaction U�rÿ r0� � Ud�rÿ r0�, one has [2, 3]

hMeei � ÿ l0�h
p

q
qB

�
�1
0

Pint�t;B� exp�ÿgt� ÿ exp
ÿt
te

� �� �
dt

t2
; �5�

where l0 � Ur0 is the interaction parameter. Considering
higher corrections in the Cooper channel leads to a ladder
summation [4, 5], so that l0 should be replaced by
l�t� � l0=�1� l0 ln�EFt�� � 1= ln�T0t� where T0 is defined as
T0 � EF exp�1=l0�.

Finally the typical magnetizationMtyp, defined asM 2
typ �

hM 2i ÿ hMi2, is given by (neglecting the interaction) [2, 7]

M2
typ �

�h2

2p2

�
��1
0

�P00int�t;B� ÿ P00cl�t; 0�� exp�ÿgt� ÿ exp
ÿt
te

� �� �
dt

t3
;

�6�
where P00�t;B� � q2P�t;B�=qB2. In the geometry of a quasi-
1D ring, the magnetizationM is proportional to the persistent
current M � IS where S is the area of the ring. Eqns (5,6) can
thus be used to get the persistent current of a diffusive ring
from the known expression of P�t� is such a geometry [3].

2. Diffusion on graphs

We wish to calculate the above quantities in any structure
made of quasi-1D wires. To this end, we reformulate the
different results. We first note that the quantities of interest
have all the same structure. They are proportional to�1

0

taP�t� exp�ÿgt� dt ; �7�

where P�t� �Pn exp�ÿEnt� and En are the eigenvalues of the
diffusion equations (1) or (2). The time integral of P�t� can be
straightforwardly written in terms of a quantity called the
spectral determinant Sd�g�:

P �
�1
0

dtP�t� �
X
n

1

En � g
� q

qg
lnSd�g� ; �8�

where Sd�g� is, within a multiplicative constant independent
of g,

Sd�g� �
Y
n

�g� En� : �9�

Using standard properties of Laplace transforms, the above
time integrals can be rewritten in terms of the spectral

determinant, so that the physical quantities described above
read [8]:

Ds � ÿs e2D

p�hO
q
qg

lnSd�g� ; �10�

hds2i � ÿ 3

b
s
e2D

p�hO

� �2
q2

qg2
lnSd�g� ; �11�

M2
typ �

�h2

2p2

��1
g

dg1�gÿ g1�
q2

qB2
lnSd�g1� B

0

�� ; �12�

hMeei � l0�h
p

��1
g

dg1
q
qB

lnSd�g1� : �13�

These expressions are quite general, strictly equivalent to
expressions (3) ± (6). On a graph made of quasi-1D diffusive
wires, the spectral determinant can be calculated explicitly. By
solving the diffusion equation on each link, and then
imposing Kirchhoff-type conditions at the nodes of the
graph, the problem can be reduced to the solution of a
system of N linear equations relating the eigenvalues at the
N nodes. Let us introduce the N�N matrixM [9]:

Maa �
X
b

coth
lab
Lf

� �
; Mab � ÿ exp�iyab�

sinh lab=Lf
ÿ � : �14�

The sum
P

b extends to all the nodes b connected to the
node a; lab is the length of the link between a and b. The off-
diagonal coefficient Mab is non zero only if there is a link
connecting the nodes a and b; yab � �4p=f0�

� b
a A � dl is the

circulation of the vector potential between a and b; NB is the
number of links in the graph. It can then be shown that for an
isolated graph the spectral determinant Sd is given by [8]

Sd � Lf

L0

� �NBÿNY
�ab�

sinh
lab
Lf

� �
detM : �15�

L0 is an arbitrary length independent of Lf. We have thus
transformed the spectral determinant which is an infinite
product into a finite product related to detM. The properties
of this spectral determinant have been studied in details in
Ref. [10], in particular, the role of the boundary conditions
has been considered and a trace expansion of the spectral
determinant has been obtained. As a physical important
result, it has been found that when isolated rings are
connected into an array of rings, the average magnetization
per ring is reduced by a factor r given by [8]

r �
Y
i

2

zi

� �
; �16�

where zi are the coordinates of the nodes belonging to each
ring.

3. Transmission through ballistic quantum
graphs

We now consider a graph made of 1D ballistic wires. There
are N nodes connected to Nin input channels and to Nout

output channels. The total transmission coefficient T from
the left to the right reservoirs is given by

T �
X
i;j

jtijj2 ; �17�
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where i 2 �1;Nin� denote the i th input channel and
j 2 �NÿNout � 1;N� denote the j th output channel. The
transmission coefficient (17) is the sum of each individual
transmission coefficient obtained by injecting a wave packet
in the i th channel. It is assumed that there is no phase
relationship between electrons in the different channels.
Solving SchroÈ dinger equation for the wave function c on
each bond of the network, andwriting current conservation at
the nodes, one gets

Maaca �
X
b

Mabcb � 0 ; �18�

where
P

b extends to the nodes b connected to the node a.
Current conservation at the input node i writes

Miici �
X
b

Mibcb � i�1ÿ rii� ; �19�

and for an output node j, one has

Mjjcj �
X
b

Mjbcb � ÿitij ; �20�

with ci � 1� rii and cj � tij; M is an N�N matrix whose
elements are

Maa �
X
b

cot�klab� ; Mab � ÿ exp iyab
sin klab

: �21�

Here k is the wave vector of the incident electron;
yab � �2p=f0�

� b
a A � dl is the circulation of the vector

potential between a and b. The equations (18) ± (20) consti-
tute a linear system of N equations from which the tij can be
calculated. The total transmission coefficient T�k� is finally
obtained from Eqn (17) by considering all the input channels.
This formalism has been used recently to calculate the
transmission coefficient of regular networks, in particular of
the so-called T 3 network which exhibits the Aharonov ±
Bohm cage effect, i.e. the absence of transmission for half
flux quantum per plaquette [11].

4. Landau diamagnetism and magnetization of
an interacting electron gas

Finally, we wish to emphasize an interesting correspondence
between the magnetization of a phase coherent interacting
diffusive system and the grand canonical magnetizationM0 of
the corresponding noninteracting clean system. The latter can
also be written in term of a spectral determinant. The grand
canonical magnetization M0 is given quite generally by

M0 � ÿ qO
qB
� q

qB

�0
ÿEF

dEN�E� ; �22�

where the integrated DOS can be rewritten as

N�E� � ÿ 1

p
Im
X
Em

ln�Em ÿ E�� � ÿ 1

p
Im lnS�E�� : �23�

Here E� � E� i0, S�E� � QEm�Em ÿ E� / Sd�g � ÿE=�h�, where
Em are the eigenvalues of the Schr�odinger equation. For a
clean system these eigenvalues are the same as those of the
diffusion equation, with the substitutions D! �h=�2m� and

2e! e. Comparing Eqns (22), (23) with Eqn (13), we can now
formally relate M0 and the HF magnetization hMeei of the
same diffusive system:

M0 ~� ÿ lim
l0!0

1

l0
Im hMeei g � ÿ EF

�h
ÿ i0

� �h i
; �24�

where the sign ~� means that the two quantities are equal,
provided the substitutionsD! �h=�2m� and 2e! e are made.
This relation can be inverted to obtain

hMeei ~� ÿ l0
p

�1
0

M0�E�
E� �hg

dE : �25�

Taking into account the renormalization of the interaction
parameter in the Cooper channel,

l0 ! l�E� � l0
1� l0 ln �EF=E� �

1

ln�T0=E� ; �26�

where T0 is defined as T0 � EF exp�1=l0�, the energy depen-
dence of the parameter l�E� can be incorporated exactly in the
integral so that:

hMeei ~� ÿ 1

p

�1
0

l�E� M0�E�
E� �hg

dE : �27�

As a simple example, consider the Landau spinless suscept-
ibility in 2D, given by w0 � ÿe2=24pm � wL=2. From
Eqn (27), one gets the phase coherent contribution of the
electron ± electron interaction to the susceptibility [13]:

wee ' 4jwLj
EFte

�h
ln
ln�T0tj=�h�
ln�T0te=�h� ; �28�

where wL is the Landau susceptibility. An ultraviolet cutoff
1=te has been added to cure the divergence at large energy.

5. Conclusions

In conclusion, we have shown how to relate phase coherent
transport and thermodynamic properties to the return
probability for a diffusive particle. It is then possible to
calculate straightforwardly these quantities by simple inte-
grals of this return probability in simple geometries. For
networks made of diffusive wires, we have developed a
formalism which relates directly the persistent current, and
the transport properties to the determinant of a matrix M
describing the connectivity of the graph. From a loop
expansion of this determinant, simple predictions for the
persistent current in any geometry can now be compared
with forthcoming experiments on connected and discon-
nected rings. Then we have shown that the transmission
coefficient of a network of one-dimensional ballistic wires
can bewritten in terms of a connectivitymatrix very similar to
M with the substitution kL! iL=Lf. Finally, we have found
a correspondence between the phase coherent contribution to
the orbital magnetism of a disordered interacting system and
the orbital response of the corresponding clean noninteract-
ing system.
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