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We show how the orbital magnetization of an interacting diffusive electron gas can be simply related
to the magnetization of the noninteracting system having the same geometry. This result is applied to
the persistent current of a mesoscopic ring and to the relation between Landau diamagnetism and the
interaction correction to the magnetization of diffusive systems. The field dependence of this interaction
contribution can be deduced directly from the de Haas–van Alphen oscillations of the free electron gas.
Known results for the free orbital magnetism of finite systems can be used to derive the interaction
contribution in the diffusive regime in various geometries.
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In recent years, there have been many theoretical works
on the thermodynamic properties of mesoscopic electronic
systems, in particular, concerning their orbital magnetism
[1–3]. The simplest description of metals deals with non-
interacting electrons in the absence of disorder. The cor-
rection to Landau susceptibility due to electron-electron
interactions and phase coherence has been worked out by
Altshuler et al. [2]. Similarly, the persistent current in
mesoscopic rings has been extensively studied. The sim-
plest description of this effect was first done in a strictly
one-dimensional (1D) picture of noninteracting electrons
[4] and the effect of diffusion and interaction was described
later by Ambegaokar and Eckern [5] and Schmid [6].

The very simple approach for free electrons and the
more sophisticated description of interacting electrons in a
disordered potential have been developed in a completely
independent way. Here, we show how these descriptions
are closely related. The main result of this Letter is a
simple relation between the response of a clean noninter-
acting electron gas and the response of a diffusive electron
system in the presence of interactions. This result origi-
nates from the very similar structures of the Schrödinger
equation and of the diffusion equation which describe the
two systems.

As a first example, we show how the persistent current
of a 1D ballistic ring is related to the current of a quasi-1D
diffusive ring in the presence of interactions [7]. Then we
show how the interaction contribution to the orbital mag-
netism of any diffusive system can be deduced immedi-
ately from the orbital response of the same noninteracting
system. As a second example, we show how the interaction
contribution to the susceptibility of a bulk diffusive system
is derived directly from the Landau susceptibility. Then,
from the de Haas–van Alphen oscillations of the free elec-
tron gas, we deduce the field dependence of the interaction
induced magnetization. Finally, we use this mapping to de-
rive the finite size corrections (in Lw�L) in the diffusive
case from the 1�kFL corrections of the magnetization of
the clean system.

Classically, the probability p�r, r0, v� for a particle to
diffuse from a point r to another point r0 is the solution of
0031-9007�01�86(20)�4640(4)$15.00
the diffusion equation,

�2iv 1 g 2 D=2
r0�pg�r, r0, v� � d�r 2 r0� . (1)

D is the diffusion coefficient. This probability has actu-
ally two parts, a purely classical one (the Diffuson) and an
interference part (the Cooperon) which results from inter-
ference between time reversed trajectories. The Cooperon
has to be taken at r � r0. In a magnetic field, it obeys
Eq. (1), where = has to be replaced by = 1 2ieA�h̄c, A
being the vector potential. The charge �22e� accounts for
the pairing of time reversed trajectories which are supposed
to propagate coherently up to a time tf. g � 1�tf and
Lw �

p
Dtw is the phase coherence length.

The probability pg�r, r0, v � 0� has the same struc-
ture as the disordered averaged (retarded) Green’s function
GR

e �r, r0� of the Schrödinger equation for a free particle of
energy e and charge 2e in a disordered potential:µ

e 1 i
h̄

2te
1

h̄2

2m
=2

r0

∂
GR

e �r, r0� � d�r 2 r0� , (2)

where te is the elastic mean-free path. In a field, = !
= 1 ieA�h̄c. The solutions of Eqs. (1) and (2) can be
written as

pg�r, r0� � pg�r, r0, v � 0� �
X
n

c�
n�r�cn�r0�
g 1 Ed

n
, (3)

and

GR
e �r, r0� �

X
n

c�
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h̄

2te
2 Es

n

, (4)

where the eigenvalues Ed,s
n are the solutions of similar

equations,

2DDcn � Ed
n cn, 2

h̄2

2m
Dcn � Es

ncn , (5)

with the mapping from the diffusion to the Schrödinger
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problem:

D !
h̄

2m
,

2e ! e , (6)

h̄g ! 2e 2 i
h̄

2te
.

It has long been recognized that a Diffuson (or a Cooperon)
behaves similar to a free particle with an effective mass
m� � h̄�2D. The goal of this Letter is to study the conse-
quences of this mapping on the orbital magnetism of clean
and diffusive systems.

For a disordered finite system of size L, the Thouless
energy Ec, given by h̄D�L2, is equivalent to the mean in-
terlevel spacing D � h̄2�2mL2 of the eigenvalues of the
Schrödinger equation. More interesting is the relation de-
duced from Eq. (6):

L
Lw

! 2ikFL 2
L

2le
, (7)

where le � yFte. 1�te spreads the levels of the Schrö-
dinger equation while 1�tw spreads those of the diffusion
equation. Inelastic disorder on the Cooperon plays, thus,
the same role as elastic disorder on a free particle. More
important, the relation (7) expresses that the limit kFL ¿
1 for the clean system corresponds to the macroscopic
limit L ¿ Lw . Inversely, the mesoscopic limit L ø Lw

corresponds to having only one Schrödinger particle in a
box (kFL ø 1).

Let us now apply this mapping to the calculation of the
magnetization. First, the T � 0 K magnetic moment of
the free electron gas (including spin) can be written as

M �
≠

≠B
N �eF ,B� , (8)

where N �e,B� is the double integral of the total density
of states r�e, B�. This contribution is known as the Landau
magnetization. Then taking into account electron-electron
interactions in the Hartree-Fock picture gives an additional
contribution [1]. For a completely screened interaction
U�r 2 r0� � Ud�r 2 r0� [8], this contribution is given by

�Mee� � 2
U
4

≠

≠B

Z
�n2�r�� dr

� 2U
≠

≠B

Z
�r�r, v1�r�r, v2�� dr dv1 dv2 . (9)

This expression contains the Hartree and Fock contribu-
tions. n�r� is the local density. r�r, v� is the local den-
sity of states (per spin direction). The average product
�r�r, v1�r�r, v2�� is nothing but the Fourier transform
pg�r, r, v1 2 v2� of the return probability pg�r, r, t�, so
that one gets finally [10]

�Mee� � 2
l0h̄
p

≠

≠B

Z Pg�t�
t2 dt , (10)
where Pg�t� �
R

pg�r, r, t� dr in the space integrated re-
turn probability. l0 � Ur0 is a dimensionless interaction
parameter, and r0 is the average density of states (per spin
direction). Writing the density of states as

r�e� � 2
1
p

Z
ImG

R
e �r, r� dr , (11)

and the integrated return probability asZ
Pg�t� dt �

Z
pg�r, r� dr , (12)

one obtains immediately from Eqs. (8) and (10) that the
two magnetizations are related [since the 1�t2 term in
Eq. (10) is equivalent to a double integral over g]:

M �̃ 2
1
l0

Im

∑
�Mee�

µ
g � 2

eF

h̄
2 i0

∂∏
. (13)

The sign �̃ means that the two quantities are equal, pro-
vided the substitutions (6) have been made. It should then
be remembered that Eq. (10) corresponds to taking the first
order contribution in l0 to the grand potential. It is known
that, taking into account higher diagrams in the Cooper
channel, one has to renormalize the interaction parameter
which becomes energy dependent l�e� [9,11,12]:

l0 ! l�e� � l0

¡ µ
1 1 l0 ln

eF

e

∂
� 1� ln

T0

e
, (14)

where T0 is defined as T0 � eFe1�l0 . Then the relation
(13) can be simply modified as

M � 2 liml0!0
1
l0

Im

∑
�Mee�

µ
g � 2

eF

h̄
2 i0

∂∏
.

(15)

As an example, we consider the case of a 1D diffusive
ring of perimeter L pierced by a Aharonov-Bohm flux
f. Starting from the flux dependent part of the return
probability,

P�t� �
L

4pDt

X̀
p�1

e2�p2L2���4Dt� cos4ppw , (16)

where w � f�f0, f0 being the flux quantum, one simply
gets, from Eq. (10), the harmonic expansion of the average
persistent current due to interactions:

�Iee� � 16l0
Ec

f0

X̀
p�1

1
p2

µ
1 1 p

L
Lw

∂
e2pL�Lw sin4ppw .

(17)

This result, for Lw � `, was first obtained by Ambe-
gaokar and Eckern (AE) [5]. It was then generalized to
the case where Lw is finite [10]. Using the relation (13),
one deduces immediately the average persistent current for
a clean 1D ring (clean means here that there is no diffusion.
Disorder is taken into account only by a finite mean-free
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path le � yFte):

I �
2
p

I0

X̀
p�1

1
p

µ
cospkFL 2

sinpkFL
pkFL

∂
3 e2pL�2le sin2ppw , (18)

with I0 � eyF�L. This result has first been obtained for
the case kFL ¿ 1 (in this case, the sinx�x term cancels) in
the absence of disorder (le � `) [4]. Note that the corre-
spondence between the AE current and the current of the
ballistic ring is not trivial. The leading term in kFL for
the clean case originates from the leading term in L�Lw in
the diffusive case. Therefore, taking simply the AE result
for the mesoscopic limit �Lw � `� would not have pro-
duced the correct result for the clean ring. In other words,
the kFL ¿ 1 limit corresponds to the macroscopic limit
for the diffusive case. We will return to this point later,
where we will show how to derive the Lw�L corrections
to diffusive magnetization from perimeter corrections in
the ballistic case.

Deducing the magnetization of a clean system from the
one of the interacting system may not appear as the most
useful procedure. More interesting is deducing the prop-
erties of an interacting medium from those of the nonin-
teracting one, i.e., to invert Eq. (13). This inversion is
given by

�Mee� �̃ 2
l0

p

Z `

0

M�e�
e 1 h̄g

de , (19)

with the substitution (6). Defining M̃ as the magnetization
of a free particle of mass h̄�2D and charge 2e, so that
M̃�e� �̃ M�e�, one can rewrite

�Mee� � 2
l0

p

Z `

0

M̃�e�
e 1 h̄g

de . (20)

Again, recognizing that Cooper Channel renormalization
modifies the interaction parameter, the energy dependence
of this parameter can be incorporated exactly in the integral
so that [13]

�Mee� � 2
1
p

Z `

0
l�e�

M̃�e�
e 1 h̄g

de . (21)

This is the main result of this paper. It gives straight-
forwardly the magnetization of an interacting electron gas
in terms of the magnetization of the same noninteracting
system.

As an example, we now consider the orbital response
of a 2D clean system. The (spinless) Landau susceptibil-
ity gives the nonoscillating part of the orbital response.
It is given by x�e� � 2e2��24pm� and is independent
of the energy x�e� � xL. Then, using the mapping (6),
the susceptibility of the Cooperon is x̃�e� � 2

4p

3
h̄D
f

2
0

�
24xL�eFte��h̄. From Eq. (21), one deduces the interac-
tion part of the susceptibility [2,3]:
4642
xee �
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� 4jxLj

eFte

h̄
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lnT0tw�h̄
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.

(22)

An ultraviolet cutoff 1�te has been added in order to cure
the divergence at large energy.

In 3D, the Landau susceptibility becomes energy
dependent x�e� � 2e2kF�e���24p2m� ~

p
e, so is the

susceptibility x̃�e� of the Cooperon, x̃�e� � 28xL

q
ete

3 h̄ .
Contrary to the 2D case where the susceptibility was
constant in energy and of order eFte, integration in energy
gives here a much smaller contribution. Using Eq. (21),
one gets the interaction correction in 3D:

xee

jxLj
�

16

p
p

3

1
lnT0te�h̄

. (23)

Consider again the 2D clean case. In addition to the Lan-
dau contribution, the de Haas–van Alphen effect expresses
the oscillatory behavior of the grand potential in 1�B, with
the fundamental period 1�B0 � eh̄�meF . The grand po-
tential is given by [14]

dA�B� � 2
1
2

xLB2

√
1 1

12
p2

X̀
s�1

�21�s

s2 cos
2pseF

h̄vc

!
,

(24)

and the magnetic moment at fixed Fermi energy is given
by M � 2≠dA�≠B. Its dependence versus field has the
well-known sawtoothed behavior. One may wonder how
this behavior translates into the language of interacting
diffusive electrons. To simplify, we restrict ourselves to the
first order in l0. Using the mapping [(19) and (20)], one
deduces the interaction contribution to the magnetization,
in units of l0h̄D�f

2
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B ln
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s2 f

µ
2ps
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B

∂
, (25)

where f�x� � 2ci�x� cos�x� 2 si�x� sin�x�. The funda-
mental frequency B0 has been transformed into the char-
acteristic field Bw � h̄��4eDtw�. Through the mapping
[(19) and (20)], the de Haas–van Alphen oscillations have
been transformed into a dull magnetic field dependence of
the magnetization �Mee�B�� shown on Fig. 1. The mag-
netic susceptibility xee �

≠�Mee�
≠B is shown on Fig. 2.

Alternatively, the magnetization (25) could have been
obtained from Eq. (10), with the following expansion of
the return probability in a constant field:

P�t� �
B�f0

sinh4pBDt�f0

�
1

4pDt

√
1 1 2

X̀
1

�21�s t2

t2 1 a2s2

!
, (26)
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FIG. 1. Magnetization of a diffusive interacting electron gas
calculated to first order in l0, in units of l0 h̄D�f

2
0 . The dashed

line shows the linear low field behavior [see Eq. (25)].

with a � f0��4BD�. The result [(25)] can be easily gen-
eralized to all orders in l0 by considering the explicit de-
pendence l�e� is Eq. (21).

Let us finally note that the limit kFL ¿ 1 for the
Schrödinger equation corresponds to the macroscopic
regime L ¿ Lw for the diffusion equation. The opposite,
so-called mesoscopic regime L ø Lw would correspond
to kFL ø 1, for which only the ground state is occupied.
In the diffusive context, this ground state is called the zero
mode. The crossover between the mesoscopic regime,
where only a few modes are relevant to the macroscopic
regime, where there is a quasicontinuum of diffusion
modes, is quite difficult to describe [15]. It is then quite
useful to know the finite size 1�kFL corrections to the
Landau susceptibility which have been extensively studied
[16]. These corrections are usually of the form [16]

x�L� � x�`�
µ
1 2

a

kFL

∂
. (27)

FIG. 2. Susceptibility of a diffusive interacting electron gas in
units of l0 h̄D�f

2
0 . The amplitude at zero field is 4�3 lntw�te

[see Eq. (25)].
Thus, knowing the finite size corrections to the Landau
diamagnetism, one can get the Lw�L corrections to the
bulk susceptibility xee. For L ¿ Lw , they are of the
form [17]

xee�L� � xee�`�
µ
1 2 a

Lw

L

∂
. (28)

In conclusion, we have shown that the magnetization of
a diffusive interacting electron gas can be deduced from
the magnetization of the noninteracting system. This map-
ping allows the study of finite size properties of diffusive
systems, in particular, the crossover between the macro-
scopic and the mesoscopic regimes.
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