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Density Modulations and Addition Spectra of Interacting Electrons
in Disordered Quantum Dots
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We analyze the ground state of spinless fermions on a lattice in a weakly disordered potential, inter-
acting via a nearest-neighbor interaction, by applying the self-consistent Hartree-Fock approximation.
We find that charge density modulations emerge progressively when rs * 1, even away from half-
filling, with only short-range density correlations. Classical geometry-dependent magic numbers can
show up in the addition spectrum which are remarkably robust against quantum fluctuations and disor-
der averaging. [S0031-9007(99)09453-3]

PACS numbers: 73.20.Dx, 73.23.Hk
The interplay of disorder and interactions in two di-
mensional Fermi systems is currently a central problem in
condensed matter physics. Mesoscopic systems provide
a unique forum for analyzing ground state properties as
it is possible to access the regime kT ø D, where D is
the mean single particle level spacing. Examples include
the study of low temperature persistent currents and mag-
netic response in small quantum rings and dots, and low
bias measurements of the dc response [1–6] and capaci-
tance [7] of weakly coupled quantum dots. The latter ex-
periments made it possible to access directly the energy
differences mN between ground states of N and N 2 1
particles: mN � E�N� 2 E�N 2 1�. The addition spec-
trum,

P
i d�m 2 mi�, depends sensitively on the nature of

the mesoscopic ground state.
Resonant tunneling measurements of the addition spec-

trum [1–6] have resulted in some interesting observations.
While the mean peak spacings are well described by the
constant interaction model, the fluctuations are not. In
[3,4] the averaging was carried out over N , whereas in
[5,6] the results were also averaged over sample geome-
try. The experimental data [3] indicate the existence of
atypical addition spectrum spacings at certain values of
N , suggesting that averaging over disorder may not be
equivalent to averaging over N (the ergodicity principle
is violated). Theoretical and numerical studies [3,8–15]
attempted to address various aspects of the problem.

In the capacitance experiments of Ref. [7], the mea-
sured addition spectra display bunching, an indication that
the Coulomb blockade becomes negative between one or
more consecutive electron addition peaks; in the experi-
ment, these peaks then coalesce. Such bunching is in di-
rect conflict with the naive picture combining the constant
interaction model with ergodic effective single-particle
wave functions. It has been shown [16] that a classical
charge model can reproduce many of the observed effects,
but there is currently no quantum mechanical explanation
as the experiments are carried out at densities considered
too high to form a Wigner solid (in the case of a Coulomb
0031-9007�99�82(26)�5329(4)$15.00
bare interaction, see Ref. [17]; for a short-ranged potential
one might expect a Wigner solid to be less stable).

Motivated by these experiments, but not attempting to
reproduce specific details thereof, we analyze the nature of
the ground state by applying the self-consistent Hartree-
Fock (SCHF) approximation [18,19]. We are thus able to
go beyond the random phase approximation (RPA) with
perturbation theory (valid for large dimensionless conduc-
tance g, and small rs [9,10]), while considering larger
systems than is feasible by exact methods. Experimental
values of rs . 1 have indeed been reported [3]. Starting
from a noninteracting model, we find that as the interac-
tion strength is increased such that rs * 1 (but still too
weak to form a Wigner solid), the electron gas crosses
over to a regime where (i) there are significant spatial den-
sity modulations; (ii) density-density correlation functions
seem to saturate, defining only short-range order; and
(iii) the addition spectrum becomes strongly N dependent,
with magic numbers for which D2�N� � mN11 2 mN ex-
hibits sharp maxima that coincide with the related classi-
cal charge model.

Recent reports of exact numerical studies [3,9,20,21]
have emphasized that the properties of quantum dots
which are not reproduced by effective single-particle
random-matrix-like theories are associated with the emer-
gence of short-range correlations. Our results support this
claim, but the main thrust here is related to (iii): some de-
viations from RPA behavior have a direct classical elec-
trostatic counterpart. The signature of the latter is not
totally washed out by quantum fluctuations even far from
the Wigner crystallization threshold.

We consider the following tight binding Hamiltonian for
spinless fermions with periodic boundary conditions:

H �
X

i

wic
1
i ci 2 t

X

�ij�
c1

i cj 1
U
2

X

�ij�
c1

i c1
j cjci , (1)

where �ij� denotes pairs of nearest neighbors, wi is the
random on-site energy in the range �2W�2, W�2�, and
t the hopping matrix element. All lengths are measured
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in units of the lattice constant a, so that U � e2�a and
t � h̄2�2ma2. For low filling (i.e., a parabolic band) we
find rs � U�t

p
4pn [22], where n � N�A is the filling

factor, for N electrons in an area A. For the noninter-
acting system we find g � kFl�2 � 96pn�t�W�2 by ap-
plying the Born approximation (valid for 1 ø g ø A);
kF �

p
4pn and l is the elastic mean free path. In the

capacitance measurements [7], the 2D quantum dots were
sandwiched between a metallic source (heavily doped n1

GaAs) and drain (Cr�Au), separated, at distances compa-
rable with the mean particle separation, by tunnel barriers.
To account for external sources of screening (taken as half
planes), one can insert a bare interaction between electrons
in the dot that is dipolar (1�r3) at distances greater than the
dot to gate separation when there is only one close gate,
and in the case of two close gates with exponentially small
long-range interactions [23]. Here we model such interac-
tions with a nearest-neighbor pair potential.

The ground state is obtained in the SCHF approxima-
tion, over a range of densities and disorder strengths at
zero magnetic field. The generalized inverse participation
ratio (GIPR) is then calculated according to the following
definition:

I �
1

n2A

X

i

�r�ri�2� , (2)

where r�ri� denotes the expectation value of the total
density at the lattice site i. The angle brackets correspond
to an average over the disorder ensemble. The GIPR
provides a convenient measure of the degree of density
modulation: in the limit of a perfectly flat density profile
it takes the value unity, and increases for a modulated
density. The maximal value that can be obtained for the
GIPR occurs when all the charge is concentrated on only
N sites, in which case I � 1�n.

The GIPR is plotted for a range of disorder strengths in
Fig. 1. For n � 1�4 it increases rapidly between U 	 t
and U 	 5t depending on the disorder strength, then gives
way to a weaker interaction dependence for U * 5t. For
comparison we also plot results for an identical system but
with bare Coulomb interactions, such that the interaction
potentials are both equal to U between nearest-neighbor
sites: the relative rapidity of the increase of I for nearest-
neighbor interactions is clear. The increase in the GIPR
signals an increase in the spatial modulation of the total
electron density; we shall refer to the increased density
modulation at finite U as a charge density modulation
(CDM) [24].

At zero interaction we find I 2 1 
 1�g for large g
(not shown). Within our numerical accuracy we were
unable to find a consistent size dependence in the GIPR,
suggesting that disorder is the dominant mechanism
controlling the small to large U crossover, as seen in
Fig. 1 [25].

The GIPR yields no information on the spatial structure
of the ground state, for which we evaluate the density-
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FIG. 1. The GIPR is plotted for a range of disorder values
as a function of the relative interaction strength U�t. The
system is a 16 3 16 lattice with nearest-neighbor (solid) and
Coulomb (dashed) interactions. We do not average over
disorder, but remark that the GIPR is self-averaging. Here
n � 1�4, implying rs 	 0.56U�t.

density correlation function defined as

C �r� � �r�r�r�0��c��r�0�2�c . (3)

The subscript c indicates that only connected averages are
included, and here, due to the homogeneity of the disorder
averaged potential, the correlation function depends only
on the vector separation r. We only consider r to be
directed along a lattice vector �1, 0�. A typical result
for the correlation function is plotted in Fig. 2. As the
interaction strength is increased, short-range correlations
develop, and then saturate. The underlying square lattice
excludes the possibility of observing incipient Wigner
crystal fluctuations, which possess the symmetry of a
triangular lattice.
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FIG. 2. The density-density correlation function (see text)
shows increasing short-ranged correlations as U�t is increased;
the values of U�t are given in the legend. Here W � 4t;
the lattice is 16 3 16. Here n � 1�4, implying rs 	 0.56U�t.
The results are averaged over 20 samples and each lattice
site. The dashed lines show approximately 1 standard deviation
due to sampling, assuming that all correlations have vanished.
Inset: at half-filling we find no decay of the correlation function
with distance for U�t * 1.
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Comparing Figs. 1 and 2, one can see that the short-
ranged correlations develop over the same range of
interaction strength as the rapid increase in I . We did
find that on rare occasions a further rearrangement occurs
at larger interaction values, but it is not clear whether this
is a genuine effect which for larger systems would become
correspondingly less rare, or a manifestation of metastable
configurations.

Let us now look at the longer-range behavior of C �r�.
At half-filling it has been claimed that in clean infinite
lattice systems a second order transition to a crystalline
state occurs at strong interactions [26]. In disordered
systems, evidence of at least short-range order has been
seen in exact calculations on small systems [9,20]. Within
the SCHF approximation we find no decay of correlations.
It is well known that at half-filling, nesting of the Fermi
surface leads to a 2kF charge density wave instability,
but away from half-filling this nesting does not occur. In
Fig. 2 it can be seen that, in the presence of disorder,
there exists no long-range order in the SCHF ground
state for n � 1�4. This, however, is also true of the
related classical system [i.e., t � 0 and W�U ! 0 in
the Hamiltonian (1)], where one expects the formation
of a noncrystalline solid. One way to establish whether
the electrons possess solid- or liquidlike correlations is
to analyze the excited states of the system. However,
to show that classical results can provide information on
the SCHF ground state away from half-filling, at least
when the particle packing is compact, we consider the
appearance of geometrical frustration, where the ground
state of the classical system contains line defects with
respect to a pure crystal. These defects lead to the
disappearance of long-ranged order, but at the same time
give rise to magic filling factors where �D2�N�� exhibits
large variations in N .

This brings us to the central observation of this study,
namely, the strong geometry and filling factor dependent
variations that can arise in the average addition spectrum
spacing �D2�N�� as the interaction strength is increased
[27]. Consider first a collection of classical charges, on
a square lattice, with nearest-neighbor interactions. If the
lattice is a torus with 2n 3 2m sites, it is possible to insert
up to 2nm particles without incurring an energy cost. The
remaining 2mn particles cost an additional 4U to add, so
that �D2�N�� displays a peak, O �U�, at N � 2nm. If on
the other hand one of the sides (or both) of the lattice is
odd [e.g., �2n 1 1� 3 �2m 1 1�] the maximum number
of particles that can be added without nearest neighbors is
reduced. It is not difficult to see that such a maximally
filled configuration contains a line defect and long-range
order is lost. In other words, the lattice of sites without
nearest neighbors is incommensurate with the underlying
lattice. In the commensurate case, the quantum system
also shows a peak in D2�N� at half-filling, but the
nesting of the Fermi surface in the noninteracting system
also makes this filling special. We show below that in
the incommensurate case we find that within the SCHF
approximation, remnants of the peaks at the magic filling
factors in the related classical model are visible far from
the classical limit, despite the lack of nesting.

We consider a lattice of the type �2n 1 1� 3 �2n 1 1�
as an example; the predictions for other incommensurate
lattices are easily obtained. In the classical limit with
nearest-neighbor interactions, the first n�2n 1 1� particles
can be added with no interaction energy cost, the next
2n 1 1 particles cost an additional 2U, and the rest cost
an additional 4U. As a result, in the classical limit,
�D2���n�2n 1 1����� [as well as �D2����n 1 1� �2n 1 1�����] is
significantly larger than all other values of �D2�N�� [28].
In our calculations we include a trivial constant interaction
term to make the results easier to read. In Fig. 3, we plot
some typical results for �D2�N�� for a 7 3 7 lattice, which
shows that for U * 2t remnants of this classical effect
can be seen clearly at the predicted filling N � 21. This
magic number effect disappears as U�t vanishes, where
spectral fluctuations become well described by random
matrix theory [14].

Similar behavior has been observed for other sample
sizes and geometries. Although these results correspond
to a density regime where quantum fluctuations are
predominant, the structure in �D2�N�� agrees qualitatively
with that of the classical counterpart. One might expect
that extending the range of the interaction will give
rise to a more intricate classical structure, but with a
correspondingly smaller amplitude which is thus more
easily washed out by quantum fluctuations. This question
is left for a future study. In previous work [16] the
results of [7] were reproduced by interacting classical
charges in a parabolic potential. In this case the source of
magic numbers incorporated the existence of topological
defects in the ground state, as well as the interplay with
the confining potential. This work suggests that even if
quantum fluctuations are strong enough to destabilize a
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FIG. 3. The addition spectrum is shown to be strongly
dependent on the number of particles in the dot, which can
be understood from classical arguments. The legend denotes
the values of U�t considered. The lattice is 7 3 7, W � 2t,
and the results are averaged over 400 samples.
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Wigner solid, they may not completely wash out such
classical effects.

In summary, we show that the metallic ground state
develops charge density modulations, controlled by the
electron-electron interaction, at densities rs * 1 depend-
ing on disorder. The development of the CDMs with
increasing rs is more rapid for shorter-range interactions,
presumably because of the large gradient of the interaction
potential. We also show that away from half-filling, the
CDMs are associated with short-range order only. Else-
where [14], it has been demonstrated that the existence
of these CDMs result in unusual fluctuations of D2 over
the disorder ensemble. Finally, we demonstrate that topo-
logical defects in the equivalent classical system occur in
the CDM, and that they result in strong filling factor and
geometry dependent variations in D2, clearly visible for
U * 2t. It seems clear that the ergodicity principle fails
in this case, and so disorder averaging and averaging over
N are not equivalent. These results lend support to the
classical analysis of Ref. [16], which suggests that the be-
havior seen in the experiments of Ref. [7] is due to topo-
logical defects in the classical ground state configuration.
We stress, however, that bunching is not generated in the
geometry that we consider.
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