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Addition spectrum and Koopmans’ theorem for disordered quantum dots

Paul N. Walker* and Gilles Montambaux
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We investigate the addition spectrum of disordered quantum dots containing spinless interacting fermions
using the self-consistent Hartree-Fock approximation. We concentrate on the regimer s*1, with finite dimen-
sionless conductanceg. We find that in this approximation the peak spacing fluctuations do not scale with the
mean single-particle level spacing for either Coulomb or nearest-neighbor interactions whenr s*1. We also
show that Koopmans’ approximation to the addition spectrum can lead to errors that are of order the mean
level spacing or larger, both in the mean addition spectrum peak spacings, and in the peak spacing fluctuations.
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I. INTRODUCTION

We consider the response of the ground state of spin
fermions to the addition or removal of a particle. To this en
we apply the self-consistent Hartree-Fock~SCHF! approxi-
mation: a nonperturbative effective single-particle theory

Koopmans’ theorem1 states that the single-particle SCH
energy levels describe the affinity and ionization ene
spectra for the unoccupied and occupied states, respecti
The approximation involved is that all the other particles
not react to this process. This approximation is gener
considered to be good when the single-particle wave fu
tions are extended: corrections to each wave function due
rearrangement of the system following the addition or
moval of a particle are expected to beO(1/N), whereN is
the number of particles in the system.2 Moreover, these cor-
rections to the wave functions are expected to disappea
the limit of vanishing disorder~having, e.g., periodic bound
ary conditions!, where the single-particle wave functions a
free waves, as well as in the limit of vanishing interaction
is then loosely assumed that in the thermodynamic lim
Koopmans’ theorem becomes exact even for disordered
tems, and should be sufficiently accurate for mesosco
samples. It is evident however, that if the physical quanti
at hand require an energy resolution of order the m
single-particle level spacing,D, the validity of Koopmans’
theorem should be reconsidered.

Our analysis of Koopmans’ theorem for a quantum do
closely related to the addition spectrum of the latter:
spectrum of energy differences between states with total
ticle number different by unity. We consider only the ener
differences between ground states, which is experiment
accessible through resonant tunneling,3–5 and capacitance6,7

measurements at low bias and temperature. We stress
while our analysis here pertains to some aspects of the
periments, a direct comparison is not feasible: first, we c
sider spinless electrons, and second, we consider disord
systems in the diffusive regime; in Ref. 3 the mean-free p
is of order the sample size, whereas in Ref. 5 the mean-
path is much larger than the system size, and ergodicit
ensured by a chaotic boundary shape.
PRB 600163-1829/99/60~4!/2541~13!/$15.00
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The position of the observed resonant tunnelling~RT!
conductance peaks can be related to the ground-s
energy differencemN5EG(N,VG)2EG(N21,VG) where
EG(N,VG) is the ground-state energy of the dot withN elec-
trons, at gate voltageVG . The spacing between consecutiv
peaks is thus related to

D2~N!5EG~N11,VG!2EG~N,VG!

2EG~N,VG8 !1EG~N21,VG8 !. ~1!

Within the constant interaction~CI! model the ground-state
energy is simply the sum of filled single-particle energ
e(n) plus N(N21)V0/2, whereV0 is the constant interac
tion. TakingVG5VG8 , the peak spacing trivially reduces to

D2~N!5e~N11!2e~N!1V0 ~2!

and so, in the diffusive regime, displays shifted Wigne
Dyson ~WD! statistics8,9 up to corrections in one over th
dimensionless conductance,g:10 P(s)5ps/2 exp(2ps2/4)
for zero-magnetic field, the case that we consider heres
5(D22V0)/D.

Recent experiments on quantum dots3–5 have shown that
while the mean peak spacings are well described by the
model, the fluctuations are not described by Wigner-Dys
statistics. It is found that the distribution ofD2 is roughly
Gaussian,3,5 with broader non-Gaussian tails seen in Ref.
In Refs. 3 and 4 the variance of the fluctuations was found
be considerably larger than that given by the WD distrib
tion. Further experimental observations, including corre
tions of peak heights11–13and the sensitivity to an Aharanov
Bohm flux14,11,15 are not consistent with random matr
results, and suggest a breakdown of the naive single-par
picture. To investigate this, one needs information on
ground-state wave function.

Blanter et al.16 have evaluated the fluctuations within
Hartree-Fock framework, neglecting effects due to t
change in gate voltageVG to VG8 . To this end they applied
the random phase approximation~RPA! to generate the
screened interaction in the confined geometry, and assu
that all Hartree-Fock~HF! level spacings, except for th
Coulomb gap, are described by WD statistics. Implicitly a
2541 ©1999 The American Physical Society
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suming Koopmans’ theorem1 to be valid, and using wave
function statistics established for noninteracting electron
a random potential, they calculated the fluctuations ofD2

beyond the CI model. These additional fluctuations w
found to be parametrically small~in 1/g) and proportional to
D. Hence, the total fluctuations inD2 were found to be pro-
portional toD. The analysis of Ref. 16 is consistent in th
limits g@1, r s!1. The parameterr s characterizes the rela
tive importance of interactions in the electronic system, a
is defined as the mean electron separation in units of
effective Bohr radius.

Exact numerical calculations on small disordered do3

did produce large Gaussian distributed fluctuations at exp
mental densities. It was claimed that for strong enough in
actiondD2 /^D2& is universal, independent of the interactio
strength and disorder, wheredD2 denotes the typical~rms!
size of the fluctuations, and the angle brackets denote d
der averaging. Thisuniversalconstant was found to be ap
proximately 0.10–0.17, to be compared with the WD res
for the CI model: 0.52D/(D1V0). We note that the typica
experimental value for the charging energyV0 , is much
larger thanD. The scaling with^D2& suggested by this
analysis3 is in stark contrast to the scaling withD obtained in
Ref. 16.

Stopa has considered ballistic chaotic billiards nume
cally, using local density-functional theory.17 In this case, it
was claimed that the fluctuations arise due to stron
scarred wave functions in the self-consistent potential. A
result of these scars, an asymmetric distribution ofD2(N)
was found, including strong correlations overN. It was then
further noted that what is actually measured~i.e., the change
in the gate voltage between resonant tunneling peaks! is not
simply related toD2(N) when the dependence ofD2(N) on
the gate voltage is strong. It was then claimed that a s
consistent calculation ofDVG with D2(N) retrieves a sym-
metric distribution ofD2(N), and reduces peak to peak co
relations.

A further suggestion that the coupling to the gate is i
portant in understanding the fluctuations has been made
reference to the CI model, with WD statistics for the sing
particle levels.18 The authors claim that the required dist
bution of D2 can be generated, except for the non-Gauss
tails, through the decorrelation of neighboring levels unde
parametric change in the Hamiltonian~mediated byVG).
However, the degree of decorrelation induced byDVG is left
as a fitting parameter.

In this paper, we present numerical calculations within
SCHF approximation, considering larger samples than is
sible by exact diagonalization.3 This approximation has bee
seen to be quite good for the calculation of persistent c
rents in similar systems.19 We show that fluctuations larg
compared to the single-particle level spacing can arise w
out recourse to varying the sample shape, size or gate to
coupling, supposing these to beadditional effects. We fur-
ther demonstrate that approximating the addition spect
spacings by applying Koopmans’ theorem can lead to la
errors in the calculation of the spacing statistics.

We consider separately both a long-range~Coulomb! bare
interaction and a short-range~nearest neighbor! bare interac-
tion. In Sec. II, we introduce our model in detail; in Sec. I
we present a short discussion of the implications of Ko
in
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mans’ theorem; in Sec. IV we present and discuss our
merical results, which are then summarized in the final s
tion.

II. THE MODEL

We address the following tight-binding Hamiltonian fo
spinless fermions:

H5(
i

wici
1ci2t(

i ,h
ci 1h

1 ci1
U0

2 (
i j

M i j i j ci
1cj

1cjci ,

~3!

wherei is the site index,h describes the set of nearest neig
bors, wi is the random on-site energy in the ran
@2W/2,W/2#, andt the hopping matrix element, hencefor
taken as unity. We study separately, both a Coulomb in
action potential,

Mi ji j 51/ur i2r j u ~4!

and a short-range potential plus a constant termMc ~see
below!,

Mi ji j 5~d i ,i 1h1Mc!. ~5!

We consider a two-dimensional~2D! system with periodic
boundary conditions, and choose to define

ur i2r j u2[@Lx
2 sin2~pnx /Lx!1Ly

2 sin2~pny /Ly!#/p2,
~6!

where (nx ,ny)[r i2r j .
All distances are measured in units of the lattice sp

ing a; the physical parameters are thereforeU05e2/a,
t5\2/2ma2. The standard definition forr s is given, for low
filling, by r s5U0 /(tA4pn), where n5N/A is the fill-
ing factor on the tight-binding lattice withA sites. The di-
mensionless conductanceg can be approximated, agai
for low filling, using the Born approximation. We find
g596pn(t/W)2, which is valid for A,N@g@1. Here n
'1/4 throughout, so thatr s'0.56U0 /t, andg'75(t/W)2.

Having identified the parameters of our model with t
standard ones employed in the theory of a continuous e
tron gas, we note that in the limit of smallr s and 1/g the
leading order term for the typical interaction-dependent fl
tuations predicted by Blanteret al.16 is ;U0D/tAg. For the
torus geometry considered here, this contribution, bein
surface term, vanishes identically. Their prediction then
duces to typical fluctuations in addition to those of the
model to be of orderU0D/tg.

The torus geometry has the advantage over geome
with hard walls whereby in the former, the compensati
background charge provides a trivial shift in all the site e
ergies, and can be removed. In a bounded dot, with an o
all charge, the excess charge may build up near the bou
ary, depending on the position of nearby metallic plates a
gates. These effects are geometry specific.16 Upon adding an
electron, the average charge configuration may change
siderably~the configuration is strongly geometry dependen!.
As the gate voltage is varied to allow for the next electr
addition, the background potential could have changed ca
ing further charge rearrangement. While it is of great inter
to analyze this issue~which may play an important role in



n
o

ue

t t
o

u
hi
a
-
ea

ea

-
h

s

i-
s
id
s

ot

s
th
is
ys

v
b
ls

th
on

a

a
o
re
n
s
H

io
he

ed

b
i
is
ic

ron

an-
en

ions
ons
e in

im-

he
Eq.
on
icle
s
gle-

ntial
F

m

p-
ba-
cle
. In

r-
is a
y
h

ion

PRB 60 2543ADDITION SPECTRUM AND KOOPMANS’ THEOREM FOR . . .
the peak spacing fluctuations as well as undermining the
ive single-particle picture by further reducing the accuracy
Koopmans’ theorem13!, we concentrate here on effects d
entirely to theintrinsic rearrangementof the dot. From this
point of view our analysis may be taken as an attemp
establish an upper bound criterion for the breakdown
Koopmans’ theorem. In reality it may break down earlier d
to other nonuniversal factors. During the completion of t
paper very recent experimental evidence for significant re
rangement has been produced.13 It is argued that rearrange
ments due to adding an electron are far greater than r
rangements due merely to a change in shape.

When considering the short-range interaction, the m
charging energyV0 in Eq. ~2! must be put in by hand
throughMc of Eq. ~5!. The way in which this is done de
pends on the physical situation being modeled, and is hig
geometry dependent~vis-à-vis the gates!. We stress that the
value ofMc does not affect the physical results. We choo
to insert

Mc5V0 /U024/A, V05( 8
r ,r 8

U0

ur2r 8u
. ~7!

This value forMc is defined such that if the charge is un
formly spread over the dot, the average charging energie
the Coulomb and nearest-neighbor cases roughly coinc
This choice has been made for simplicity, but correspond
the premise that the interactions of theN-electron gas with
the positive background and with itself is the same for b
models considered. Exchange contributions, which tend
reduce the total charging energy, are included insofar a
cancel both the on-site contributions to the energy, and
unphysical self-interaction of electrons, but are otherw
neglected.16,20 The energy associated with charging the s
tem uniformly is U0N(N21)/(2A2)( r ,r8

8 ur2r 8u21 in the
Coulomb case, andU0N(N21)/(2A2)(4A1McA

2) in the
nearest-neighbor case. Equation~7! follows from equating
these energies. This estimate can be systematically impro
if the above premise is taken as the definition, not only
correctly accounting for the exchange contributions, but a
by considering single particle wave-function statistics in
diffusive regime. In this case, wave-function correlati
functions such aŝuc i(r )u2uc j (r 8)u2& are required in order
the calculate the average electrostatic energy, where here
after ^•••& denotes averaging over the disorder ensemble.

In Ref. 16 it was assumed that the~RPA! screening can be
taken into account before constructing the Slater determin
ground state, and therefore their result corresponds t
short-ranged effective interaction. It is not clear that this
mains a consistent procedure when calculating the grou
state energy self-consistently. The reason for the incon
tency is that many of the diagrams generated by the SC
approximation are already included in the RPA calculat
of the screening, resulting in double counting. On the ot
hand, if the screening is generated externally~e.g., by close
metallic gates!, then it is consistent to insert a short-rang
bare interaction, and this is the point of view taken here.

In some sense, the Coulomb interaction results can
considered as the opposite limit of the nearest-neighbor
teraction, and is of interest in this context. However, it
more difficult to physically motivate the use of a Coulomb
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bare interaction unless one is considering very low-elect
densities. Screening is indeed weak in a 2d electron gas in a
vacuum, even at high density, but the SCHF procedure c
not correctly generate screening by itself; while it can scre
the Hartree contributions~as discussed above!, it does not
screen the exchange~Fock! term. However, we have verified
that for the range of parameters considered here, fluctuat
in the Hartree energy are larger than the typical fluctuati
of the exchange energy. This suggests that the error mad
not screening the exchange term correctly is not overly
portant.

III. IMPLICATIONS OF KOOPMANS’ THEOREM

Let us now consider the form ofD2 , and approximations
to it given by applying Koopmans’ theorem. We denote t
diagonal matrix elements of the one-body operators in
~3! by Ti

N , and the antisymmetrized Hartree-Fock interacti
by Vi j

N , where hereafter the subscripts denote single-part
states, and the superscriptN denotes the number of particle
present and identifies the self-consistent basis of sin
particle wave functions being employedc i

N . For the torus
geometry, where the gate voltage and background pote
represent a trivial shift that can be omitted, the SCH
ground-state energy is given by

EG~N!5(
j

N

e j
N2

1

2
(
i j

N

Vi j
N5(

j

N

Tj
N1

1

2
(
i j

N

Vi j
N , ~8!

wheree l
m is thel th SCHF single-particle energy for a syste

of m particles in the ground state

e l
m5Tl

m1(
j

m

Vl j
m . ~9!

Using Eq.~8!, we find @cf. Eq. ~1!#

D2~N!5TN11
N112TN

N211(
j

N

~Tj
N1122Tj

N1Tj
N21!

1(
j

N

~VN11 j
N11 2VN j

N21!

1
1

2
(
i j

N

~Vi j
N1122Vi j

N1Vi j
N21!. ~10!

Applying Koopmans’ approximation corresponds to dro
ping the superscripts and employing an appropriate fixed
sis. The theorem implies that the effective single-parti
statesdo not depend on the occupation of these states
particular, Koopmans’ theorem yieldseN11

N for the minimum
energy required to add a particle to a system ofN particles,
andeN

N for the maximum energy gained by removing a pa
ticle from the same system; in both cases the final state
ground state. Clearlye l

m as well as the ground-state energ
depend onm, even in Koopmans’ approximation, throug
the number of terms in the sum in Eqs.~9! and ~8!, respec-
tively. It is then easy to see that Koopmans’ approximat
yields
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D2
k1~N!5eN11

N 2eN
N . ~11!

We also consider two other approximations toD2 that in-
volve calculating two self-consistent bases rather than
one

D2
k2~N!5eN11

N 2eN
N21 ~12!

D2
k3~N!5eN11

N112eN
N . ~13!

All three estimates~11!–~13! coincide with D2(N) of Eq.
~10! if Koopmans’ theorem holds. To connect with the no
tion of Ref. 16, and to demonstrate the difference betw
the above three approximations and the fully self-consis
result, we provide a schematic diagram of the SCHF spe
in Fig. 1.

Since the self-consistent basis ofN particles provides the
lowest energy forN occupied levels, and similarly forN
21 particles, the following relations are clear

(
i

N21

Ti
N1

1

2 (
i j

N21

Vi j
N> (

i

N21

Ti
N211

1

2 (
i j

N21

Vi j
N21

(
i

N

Ti
N1

1

2 (
i j

N

Vi j
N<(

i

N

Ti
N211

1

2 (
i j

N

Vi j
N21. ~14!

Combining these equations, we find thatDe(N)[D2
k1(N)

2D2
k2(N)>0, or equivalently

De~N![eN
N212eN

N>0. ~15!

The equalities in Eqs.~14! and~15! only hold when no modi-
fication of the effective single-particle wave functions occu
following the addition of an electron. In a disordered dot,
which there are no spatial symmetries, such a modifica
will always take place, and soDe can be considered strictl
positive.

The differenceDe provides a measure of the effectivene
of Koopmans’ theorem. To demonstrate this we present
Fig. 2, a schematic diagram of the surface of expecta
values of the many-body Hamiltonian in the space of Sla
determinants ofN21, N, and N11 particles. The SCHF
ground states correspond to minima in these surfaces. F
the diagram, it is clear that the energieseN11

N andeN
N21 are

upper bounds to the respective addition energies, and

FIG. 1. A schematic diagram of the SCHF spectra ofN andN
11 particles.
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energieseN11
N11 andeN

N are lower bounds to the addition ene
gies. The approximationD2

k1, is therefore obtained by sub
tracting a lower bound (eN

N) from an upper bound (eN11
N ).

As a result, the average value contains the average differe
between the two bounds in addition to the correct meanD2 .
It is generally assumed that the difference between the
bounds vanishes in the thermodynamic limit, and theref
so doesDe. On the other hand,D2

k2 corresponds to the dif-
ference of two upper bounds to the two relevant addit
energies. Regardless of the quality of the upper bound
long as it is not strongly dependent on the number of p
ticles present, both the particle number and disorder a
aged results are good. The third approximation toD2

k3 corre-

sponds to the difference of two lower bounds, and likeD2
k2 is

good in the mean. It is for this reason that we introduce th
alternative approximations. It is easy to see thatD2

k1(N)

2D2
k3(N)5De(N11) and therefore provides no further in

formation. On the other hand, the fluctuations ofD2
k3 can be

different from those ofD2
k2, and so are investigated sep

rately. We note that in a clean system atr s below the Wigner
crystal transition,22 the minima would align in Fig. 2, reflect
ing the validity of Koopmans’ theorem in that limit.

Let us briefly discuss the non-self-consistent sing
particle picture, for which the Koopmans’ approximatio
~11!–~13! and Eq.~10! all coincide

D2~N!5TN112TN1 (
j

N21

~VN11 j2VN j!1VN11N .

~16!

Here, the termnon-self-consistent approximationrefers to a
scheme where a set of effective single-particle states is g
~e.g., by solving theN-electron SCHF problem!, and utilized
for any number of particles present in the system. T
nearest-neighbor spacings between levels that are both o
pied or unoccupied has a similar form

FIG. 2. A schematic diagram representing the expectation va
of the Hamiltonian in the spaces ofN21, N and N11 Slater de-
terminants~superimposed!. Distances are only meaningful within
given space. In order to define distances between two Slater d
minants in two different spaces, i.e.,CN andCN11, we include the
first unoccupied state withCN ~Ref. 21!. In this way Koopmans’
theorem is exact when the two Slater determinants coincide.
SCHF solutions correspond to minima in these surfaces. It can
seen that the Koopmans’ approximationseN11

N andeN
N to the addi-

tion energyEG(N11)2EG(N) are upper and lower bounds, re
spectively. Similarly for the addition energyEG(N)2EG(N21).
The definition of the Koopmans’ approximation toD2 given by Eq.
~11! can be seen to contain the difference between these boun
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em11
N 2em

N5Tm112Tm1(
j

N

~Vm11 j2Vm j!, ~17!

the major difference between Eqs.~16! and~17! is the addi-
tional unbalancedmatrix elementVN11N appearing in Eq.
~16!. Let us also suppose that in this simple single-parti
scheme the electrons interact with a short-ranged effec
interaction. Blanteret al.16 introduce the hypothesis that th
~normalized! spacings~17! andD22VN11N obey WD statis-
tics up to corrections in 1/g. Further assuming that the wave
function correlations are still close to those of noninteract
particles leads, for the short-ranged effective interaction
the result Var(Vi j );(U0D/tg)2,23 so that the interaction
dependent contribution todD2 scales likeU0D/tg.16 This
analysis is valid in the regimer s!1 andg@1, implying that
Koopmans’ theorem is a good approximation in that regim

IV. RESULTS AND DISCUSSION

In this section we present and discuss the results of
numerical simulations for both the nearest-neighbor and
Coulomb bare potentials. To make each subsection s
contained there is some repetition.

A. Short-range interactions

We consider first the case of a nearest-neighbor bare
teraction potential as defined in Eq.~5!. We begin by plotting
the distributions of both the level spacings~17! and the gap
~16! of the SCHF spectrum for finiter s , g. In this case~16!
and ~17! are calculated in the self-consistent basis ofN par-
ticles. In Fig. 3, it is seen that the normalized level spacin
between occupied states show an increasing deviation f
WD to Poisson statistics asU0 is increased. This is also tru
for the unoccupied states, but to a much greater extent.
difference between occupied and unoccupied states in
SCHF approximation will be discussed in greater detail la
We interpret the tendency towards Poisson statistics as a
nature of the incipient localization of the effective on
particle states.

The normalized gap (D2
k1) distribution tends towards a

more symmetric distribution that is approximately Gauss
asU0 is increased.

We have also investigated the gap (D2) distribution ob-
tained within the fully self-consistent scheme, which w
show in Fig. 4. We find that asU0 is increased, the distribu
tion evolves from a WD form to a more symmetric distrib
tion similar to a Gaussian.

We shall concentrate first on the mean values of th
distributions. A typical dependence of^D2& on the interac-
tion parameterU0 is plotted in Fig. 5. Whilê D2

k2& and^D2
k3&

provide a good approximation, we see a strong deviation
^D2

k1&. For all the system sizes considered, this effect occ
at r s;O(1). Results for the CI model, evaluated as d
scribed above, are plotted for comparison. Deviations of
der O(U0 /A) from the CI model appear aboveU0'2 (r s
'1).

Elsewhere,24 we show that the ground state develops la
density modulations asU0 is increased beyondr s;O(1).
These ground-state charge density modulations~CDM’s! ex-
e
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plain the deviations of̂D2& from the CI model prediction:
they reduce the average addition energy by up to 4U0 /At
when n,1/2 for a commensurate lattice. Whenn.1/2 the
mean charging energy can be correspondingly increased

We are also now in a position to understand why the le
spacing statistics between unoccupied states show an
creased tendency towards a Poisson distribution: the den
modulations that appear in the ground state alter the pote
felt by the unoccupied states. These modulations are not

FIG. 3. SCHF level spacing distributionsP@s# for ~a! occupied
states,~b! unoccupied states;s5DE/^DE&, and ~c! the gapD2

k1,
wheres5(D2

k12^D2
k1&)/dD2

k1. The solid lines show the WD distri-
bution, and in~c! the dashed line follows a Gaussian law. Th
samples were 8* 9 lattices with 14 electrons and nearest-neighb
interactions; W52. r s'0.56U0 /t. The statistics were obtaine
from an ensemble of 2500 samples.
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tially ordered, as is demonstrated in Ref. 24. Hence, asU0 is
increased, the unoccupied states see an effective pote
with increasingly strong modulations and tend to locali
whence the tendency towards a Poissonian distribution.

Let us consider the error in̂D2
k1& in more detail. As can

be seen in Fig. 6,̂De&/D increases with the system size f
lattices up to about 7* 8; for larger systems (A*50) it seems
that the error becomes proportional toD, and is of orderD
when r s is of order unity.

We find that the nature of the disorder dependence of^De&
depends on the interaction strength, as seen in Fig. 7.
change in dependence occurs at interactions strengths c
sponding tor s'1 for all the sample sizes considered. O
might be surprised that deviations from Koopmans’ theor
do not smoothly decrease asW˜0 since, in the limit of
vanishing disorder, Koopmans’ theorem becomes exac

FIG. 4. DistributionsP@s# wheres5(D22^D2&)/dD2 for vari-
ous interaction strengths obtained self-consistently for the nea
neighbor interaction. The solid line shows the WD distribution,
dashed line shows the Gaussian distribution. The samples were* 8
lattices withN515, W54, and the statistics were obtained from
ensemble of 3000 samples.r s'0.56U0 /t.

FIG. 5. Typical result for the mean Coulomb gap averaged o
400 disorder realizations. Here,W54, the lattice is 9* 8 and N
515. The dashed line is the CI result.r s'0.62U0 /t.
tial
,

he
rre-

n

the torus due to the restoration of translational symme
However, whenW˜0, the spectrum develops many ne
degeneracies such that the effective perturbation due toU0 is
magnified asW˜0. In the limit r s˜0, g@1, the typical size
of the matrix elementsVi jkl , which drive the rearrangemen
scale likedVi jkl ;r sD/g,23 thus, one expects that in this re
gime ^De& should increase with disorder. We find only
weak increase with disorder forr s&1.

In Fig. 8, we plot the interaction dependence of^De&/D.
We find that at smallU0 , ^De&/D}(U0 /t)2, with deviations
for largerU0 . In fact, this quadratic behavior can be unde
stood using second-order perturbation theory. To see this
refer back to the schematic diagram of Fig. 2. A shift21 oc-
curs in the ground-state configuration when a particle
added, which is represented by a misalignment of
minima. This shift is, to leading order, linear inU0 . Since
the SCHF ground-state energy is a minimum in the expe
tion value of the Hamiltonian, the difference of ground-sta
energies for the two configurations will be quadratic in th

st-

r

FIG. 6. ^De&/D against the sample areaA after 75 to 1000
disorder realizations. The dotted lines are proportional toA as
guides for the eye.r s'U0/2t.

FIG. 7. ^De&/t against disorderW averaged over 200 disorde
realizations for a 11* 10 lattice withN528. r s'0.54U0 /t.
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shift. Furthermore, the local curvature tensor is independ
of U0 when the interaction matrix elements are small co
pared to the mean level spacing.25 Thus,^De& scales likeU0

2

in the perturbative regime. The indication is that second
der perturbation theory is qualitatively good even forr s;1.
We note that since both the shift and the local curvat
tensor depend on the disorder, there is no such simpleW
dependence.

To summarize the results for the mean Coulomb gap,
find that Koopmans’ approximation~11! makes an error in
the mean charging energy, which for smallr s , A&50, and
fixed disorder scales likêDe&}r s

2 . There is also evidence
that for the larger sizes (A*50), far beyond that accessib
by exact diagonalization, that^De&}r s

2D. The latter depen-
dence is consistent with the expectation that for sufficien
small r s , 1/g, perturbation theory is valid when the effectiv
interaction is short ranged. We find that^De&;O(D) when
r s;O(1). To understand this result, we return to Eqs.~16!
and~17!, and fix the basis to be the self-consistent one foN
particles, so that Eq.~16! now describesD2

k1. Since we have
verified that the level spacings~17! show nearest-neighbo
separation statistics that are close to WD for allmÞN, with
an approximately constant density of states, we are led
conclude that̂ De& arises due to the fundamental differen
between occupied and unoccupied levels in the SCHF
proximation. In short, whilê Vm11 j

N 2Vm j
N & for mÞN van-

ishes as expected,̂VN11 j
N 2VN j

N & does not. Indeed̂ De&
}( j

N21^VN11 j
N 2VN j

N &.
Turning now to the fluctuations inD2 , we plot an ex-

ample result in Fig. 9. The most striking behavior is t
asymptotic saturation of the fluctuations~verified but not
shown for even stronger interactions!. As with the deviations
of ^D2& from the CI model, this occurs over the same ran
of interactions for all the system sizes considered, and
associated with the appearance of CDM’s. Over the rang
interaction strengths shown the fluctuations have not c
pletely saturated, but the ground-state density modulat
are already present,24 such that, at low filling, the short
ranged contribution to the interaction energy is reduced

FIG. 8. ^De&/D againstU0 after 75 to 1000 disorder realiza
tions, for a range of sample sizes:n'1/4, on a log-log scale. The
dashed line is a plot of̂De&/D}U0

2/t2, r s'U0/2t.
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the limit of strong interactions the charge segregates a
kinetic-energy cost of orderO(t), andU0 plays no further
role in the ground-state energy fluctuations. The fluctuati
therefore become sublinear inU0 , and eventually saturate t
an interaction independent value. Moreover, the results
the fluctuations become strongly geometry and filling fac
dependent.26 We note that the observed saturation is in fa
an artifact of the sharp cutoff in the interaction range: with
longer-ranged interaction, charge segregation cannot el
nate contributions due to the interaction~although it may
significantly reduce them!, and the fluctuations would no
longer be bounded simply by kinetic energy consideratio

In Fig. 9 it can also be seen that for strong interactio
the fluctuations are overestimated byD2

k1 and D2
k2, and un-

derestimated byD2
k3. This can be understood within the pic

ture given above of charge-density modulations. In this ca
an occupied state that is removed non-self-consistently
yield less energy than can be gained when the system
allowed to reorganize, but the typical size of this error sa
rates to an interaction-independent value for the same re
that the SCHF fluctuations do. If, on the other hand, an
occupied state is occupied non-self-consistently, it is not p
sible to avoid contributions from the short-ranged part of
potential ~we do not consider strongly Anderson localize
states at very low filling!, and the typical error increase
indefinitely with the interaction strength. As a resultD2

k3 un-
derestimates the fluctuations by an amount that saturate
an interaction-independent value, whereas fluctuations in
charging energy predicted byD2

k1 and D2
k2 grow with U0

indefinitely; the errors made in employing the latter appro
mations diverge with the interaction strength.

Concentrating now on the fully self-consistent results,
fluctuations in the charging energy are plotted against
sample size in Fig. 10. As expected, for very weak inter
tions, the typical fluctuations vanish like 1/A, being domi-
nated by kinetic-energy fluctuations. For stronger inter
tions, this dependence no longer holds: forr s!1 our results
are in broad agreement with Ref. 16, but do not agree w
their suggestion that the typical fluctuations remain prop

FIG. 9. Typical result for the typical fluctuations of the Co
lomb gap averaged over 400 disorder realizations. Here,W54, the
lattice is 9* 8 andN515. r s'0.62U0 /t.
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tional to D for r s.O(1). This appears to conflict with a
simple single-parameter scaling argument.27 The appearance
of fluctuations that do not scale withD coincides with the
appearance of density modulations. We stress that in
model there can be no physical connection between the
plitude of the constant interaction and the amplitude of
fluctuations.

For strong interactions the dominant disorder depende
appears to develop only forW*4, where it is consistent with
the emergence of a linear dependence to be expected
spatial rearrangements in the disorder potential. An exam
is plotted in Fig. 11. We reiterate that we also find stro
geometry and filling-factor dependences. It is extremely d
ficult to extract disorder scalings in such small systems
causeW/t is required to be fairly large to generate diffusiv
motion, which in turn stretches the spectrum in the tails. T
can be seen at weak interaction, where one would h
hoped to see a disorder-independent plateau inD ~i.e, dD2 at
U050).

To summarize then, we finddD2;0.52D1arsD
1O(r s

2), wherea is an undetermined constant or function
disorder strength. We note that the disorder scaling is
clear because of the residual dependence ofD on W.

B. Long-range interactions

We consider here the results for the Coulombic bare
tential.

We first study the distributions of both the level spacin
~17! and the gap~16! of the SCHF spectrum at finiter s , g.
In this case, Eqs.~16! and ~17! are calculated in the self
consistent basis ofN particles. In Fig. 12 it is seen that th
normalized level spacings between occupied states obey
tistics very close to WD for all interaction strengths cons
ered. Between occupied states@Fig. 12~a!# there is a mild
deviation towards Poisson statistics for the strongest inte
tion strengths, indicative of a weak tendency towards loc
ization. Between unoccupied states@Fig. 12~b!# the distribu-

FIG. 10. dD2 /D againstA, with W54 andn'1/4, after 75 to
1000 disorder realizations. The RMT result is shown as a do
line, the dashed line is proportional toL, and the dot-dashed line i
proportional toA. r s'U0/2t.
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tion is even closer to WD. On the other hand, the normaliz
gap distribution clearly tends towards a more symmetric d
tribution that is approximately Gaussian.

We have also investigated the gap (D2) distribution ob-
tained within the fully self-consistent scheme, which w
show in Fig. 13. Again, we find that asU0 is increased, the
distribution evolves from a WD form to a symmetric distr
bution similar to a Gaussian.

We shall concentrate first on the mean values obtai
from these distributions, and will come to the variance la
in the section. Figure 14 shows a comparison of^D2&, with
the various approximations to it, plotted againstU0 . While
^D2

k2& and ^D2
k3& provide a good approximation tôD2&, we

see a clear deviation of̂D2
k1&. Results for the CI model

evaluated as described above, are plotted for compari
That the CI model is good in the mean indicates that
single-particle wave functions remain roughly uniformly di
tributed over the dot for allr s considered.

In Fig. 15 we plot̂ De&/^D2& against the sample areaA,
for an intermediate disorder strength (W54). Since we
know from Fig. 14 that̂ D2

k2&'^D2&, then^De& is very close

to ^D2
k1&2^D2&, the total error made by applying Koopman

theorem. ForA&50, we find that for a fixed interaction
strength^De&}L(^De&/^D2&}A). For larger samples with
U0&2 we find a weakening in the dependence, but see
indication that it will vanish relative toD. The result that the
deviations from Koopmans’ approximation increase w
system size~when compared toD!, showing no sign of satu-
ration, is admittedly strange, and may be an artifact of
specific model considered here. However, the result
Koopmans’ approximation appears to fail even as the sys
size tends towards the thermodynamic limit, is in line w
our findings for the short-ranged case.28

It is interesting to see how the error depends on disord
In Fig. 16, we plot̂ De&/t for a range of disorder strengths
the disorder dependence as a function of interaction is we
but not simple. Similarly to the short-ranged case, the de
tions from Koopmans’ approximation do not decrease

d
FIG. 11. A typical result fordD2 /t againstW, averaged over

200 disorder realizations. Here, the sample is 11* 10, N528. r s

'0.54U0 /t.
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small disorder. This occurs for the same reasons as for
short-ranged case. Here too the typical size of the ma
elementsVi jkl , which drive the rearrangement scale i
versely with g. One thus expects that in this regime^De&
should increase with disorder, this is indeed seen in the
ure. ForU0*4t, De decreases with disorder at sufficient
largeW, with evidence of a turning point (dDe/dW50) at
U054t, W'4t.

In Fig. 17 we plot the interaction dependence of^De&/D.
We find that at smallU0 , ^De&/D}(U0 /t)2, with deviations
for largerU0 . This quadratic behavior has the same origin

FIG. 12. SCHF level spacing distributionsP@s# for ~a! occupied
states,~b! unoccupied states;s5DE/^DE&, and ~c! the gapD2

k1,
wheres5(D2

k12^D2
k1&)/dD2

k1. The solid lines show the WD distri
bution, and in~c! the dashed line follows a Gaussian law. T
samples were 8* 9 lattices with 14 electrons and Coulomb intera
tions; W52. r s'0.56U0 /t. The statistics were obtained from a
ensemble of 2500 samples.
he
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that of the short-ranged case: the indication is that seco
order perturbation theory is qualitatively good even forr s

;1.
To summarize the results for the mean Coulomb gap,

find that Koopmans’ approximation~11! makes an error in
the mean charging energy, which for smallr s and L, and
fixed disorder scales likêDe&}r s

2L. There is also evidence
that for the larger sizes (A*50), far beyond that accessibl
by exact diagonalization, that the size dependence vanis
^De&}r s

2 . In contrast to the naive expectation however,
find no sign of this error vanishing relative toD in the ther-
modynamic limit. This is due to the fundamental differen
between occupied and unoccupied SCHF levels already
cussed in the short-ranged case.

FIG. 13. DistributionsP@s# where s5(D22^D2&)/dD2 for
various interaction strengths obtained self-consistently for the C
lomb interaction. The solid line shows the WD distribution, t
dashed line shows the Gaussian distribution. The samples were* 8
lattices withN515, W54, and the statistics were obtained from a
ensemble of 3000 samples.r s'0.56U0 /t.

FIG. 14. Typical results for the mean Coulomb gap under va
ous approximation schemes, averaged over 400 disorder rea
tions. Here,W54, the lattice is 11* 10 andN528. r s'0.54U0 /t.
The dashed line is the CI result for the mean.
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We now consider the fluctuations inD2 . As an example
of the interaction dependence of these fluctuations in
various approximation schemes, we plot the results fo
fixed size in Fig. 18. It is seen that applying Koopman
theorem in the forms~11!–~13! results in considerably
smaller fluctuations than the fully self-consistent calculati
To quantify this error, we plotdD2

k2/dD2 in Fig. 19, which
shows that the relative error initially increases with intera
tion strength, but shows signs of saturating. The value of
saturation appears to increase towards unity as the sy
size is increased.

We now concentrate on the fluctuations of the fully se
consistent peak spacingD2 . For comparison with Ref. 3 it is
useful to plotdD2 /^D2& against the interaction strength for
range of sample sizes. This is done in Fig. 20. In the inset
plot dD2 /D, which shows that the peak spacing fluctuatio

FIG. 15. ^De&/^D2& against the sample areaA; W54, n'1/4,
and the results averaged over 300 to 1000 disorder realizations
a range of interaction strengths. The dashed lines sh
^De&/^D2&}A as guides for the eye.r s'U0/2t.

FIG. 16. ^De&/D against disorderW/t averaged over ensemble
of 300, 11* 10 samples with 28 particles.r s'0.54U0 /t. The dashed
line is proportional toAW.
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are not proportional toD for r sL;O(1).29 From Fig. 20 it
can be seen that the curvesdD2 /^D2& do not saturate to a
constant as suggested in Ref. 3, although to see this cle
one has to consider larger sample sizes than are accessib
exact calculations. The curvedD2 /^D2& appears to take on
the approximate form of a constant term plus a linear te
for r sL;O(1). The constant contribution identified by Si
vanet al.,3 is here, contrary to their claim, nonuniversal~i.e.,
it is disorder dependent!.

In Fig. 21 we plotdD2 /^D2& against disorder for the 10
311 lattice with a range of interaction strengths. AtU050 it
is seen that forW&6 the systems obeys WD statistics qu
well. For the sample size considered we find that in the
gime 0.5&U0&6.0 (0.25&r s&3.0) dD2 /^D2&}W, and at
stronger interactions this dependence weakens. The inte
diate dependence,dD2 /^D2&}W, is consistent with the de
pendencedD2 /^D2&}1/Ag recently observed independent
by Bonci and Berkovits30 for the Buminovich Stadium bil-
liard. Analysis of Fig. 20 leads to the conclusion that t
quadratic contribution~in U0) to dD2 is independent of dis-
order, which is consistent with Fig. 21.

To identify the system size scaling of the various con
butions we plot,dD2 /D againstA in Fig. 22. ForU050 the
system obeys WD statistics anddD2 /D is independent of
size. The regime over which the fluctuations are appro
mately proportional to the mean charging energy~the con-
stant contribution todD2 /^D2& alluded to above, which cor
responds to aAA dependence in the figure!, depends on the
system size. As could be seen in Fig. 20 another term be
to dominate the fluctuations at largerU0 , which is quadratic
in U0 , this term increases more rapidly with the system si
and so dominates at lowerU0 in larger systems. Over the
range of sizes considered, this term appears to scale likeL2.
The cross-over in dominance therefore occurs atU0;1/L for
fixed disorder strength; clearly the quadratic term will dom
nate in large samples. The increase indD2 /D with system
size appears to be an artifact of using the unscreened C
lomb interaction in the Hamiltonian.

for
w

FIG. 17. ^De&/D againstU0 /t after 300 to 1000 disorder real
izations, for a range of sample sizes, all at approximately qua
filling with W54. r s'U0/2t. The dashed line is proportional t
U0

2.
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Summarizing the results presented in Figs. 20–22, and
above discussion, we find forr sL*O(1) an approximate
form: dD2;0.52D1a^D2&/Ag1brs

2 where a,b are con-
stants. One would normally expect the fluctuations to be
ear in the interaction strength~i.e., b50). A possible source
for such a quadratic interaction dependence in the typ
fluctuations is the development of correlations that grow l
r s

2 in products of eight wave functions. Elsewhere24 we
present evidence for increased fluctuations in the grou
state density in this regime, as compared to a noninterac
system. It is not yet clear whether this result is an artifac
the SCHF approximation~which has also very recently bee
observed in 1D systems31 using a similar approximation
scheme!, or a genuine physical effect.

Finally, it is worth noting that since the exchange intera
tion is not correctly screened, that errors in the SC
scheme might be expected to diverge with respect toD as the

FIG. 18. Typical results fordD2 /D under various approxima
tion schemes, averaged over 300 disorder realizations. HereW
54, the lattice is 11* 10 and N528, r s'0.54U0 /t. The Koop-
mans’ approximants can be seen to underestimate the fluctuat

FIG. 19. dD2
k2/dD2 againstU0 for a range of sample sizes, a

approximately quarter filling:r s'U0/2t. The statistics are obtaine
from 300 to 1000 disorder realizations for each sample size.
he
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system size is increased. We can neither confirm nor cou
this argument, but have verified that forr s&5 the fluctua-
tions in the exchange contribution are smaller than those
the direct contribution.

V. SUMMARY

We have investigated the addition spectra of disorde
quantum dots employing an effective single-particle appro
mation, both using a fully self-consistent analysis, and
invoking Koopmans’ theorem. We were able to consider s
tem sizes with up to 144 sites, and 37 particles, compare
the latest exact calculations on samples with 24 sites an
particles.3 The larger sample size also allows us to consi
smaller values ofg than exact calculations while retaining a
ergodic noninteracting limit, and therefore approaches

ns.

FIG. 20. dD2 /^D2& againstU0 /t, after 300 to 1000 disorde
realizations. The legend shows the sample size andW, n'1/4: r s

'U0/2t. The random matrix theory result atU050 is dD2 /^D2&
'0.52. Inset:dD2 /D for the same data set.

FIG. 21. dD2 /^D2& against W/t averaged over 300 10* 11
samples withN528. r s'0.54U0 /t. Results for other sample size
were similar. The CI1RMT result forU050 is plotted as a dotted
line.
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experimental parameters more closely. The inclusion of s
in a consistent manner is left for a future project.

Our SCHF results for the typical fluctuations of the pe
spacings for particles possessing short-ranged bare inte
tions are entirely different from the results for long-rang
bare interactions. In the short-ranged case, we find the s
scaling as Ref. 16 for very weak interactions (r s!1), but for
r s*1 deviations from this behavior become significant a
coincide with the appearance of interaction-induced den
modulations. We find no size dependence in the onse
these effects. We find that strong filling factor and geome
dependences arise due to these density fluctuations,
therefore do not expect that the disorder ensemble stati
can be mapped to statistics over the ensemble of filling
tors: ergodicity is lost. We suggest that employing a sho
ranged bare interaction in a self-consistent scheme is no
appropriate model for the quantum dots of Refs. 3–5, 11
for which r s.1, but may be a useful model for dot geom
etries sandwiched between very close metallic gates, w
provide a good external source of screening.32,33 In this re-
spect, we identify some experiments on the addition sp
trum that possess a metallic source~heavily dopedn1 GaAs!
and drain~Cr/Au!, at separations of the order of the avera
interparticle spacing in the dot.6,7

In the Coulomb case the SCHF approximation toD2
yields typical fluctuations that do not scale withD for r s
*1/L. In Ref. 3 it is claimed thatdD2 is universally propor-
tional to ^D2& for strong interactions~but still far from the
accepted Wigner Crystal transition point!. In contrast, we
find, in addition to the small interaction-independent con
bution, a contribution todD2 that is proportional tôD2&/Ag
~i.e., nonuniversal!, and a further contribution that scales lik
r s

2 , which is independent of disorder, and appears to be

FIG. 22. dD2 /D against sample areaA averaged over 300 to
1000 disorder configurations. The dotted line shows the CI1RMT
result, the dashed line is proportional toAA, and the dot-dashed line
is proportional toA. r s'U0/2t.
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to the development of charge-density modulations.24 The lat-
ter is not detectable in the small systems examined num
cally in Ref. 3, and so our results are not numerically inco
sistent with exact calculations.3 While we do not include
spin, the observed decrease in the fluctuations withg is con-
sistent with the experimental indications3,5 that in cleaner
samples the fluctuations are smaller.

We show that a direct application of Koopmans’ theore
overestimateŝ D2&. This overestimate, a manifestation o
the breakdown of Koopmans’ approximation, does not va
ish on the scale ofD in the thermodynamic limit. The error
seems to scale differently with sample size for sample ar
above or belowA'50. In the nearest-neighbor case, wi
A*50, this error scales withD, but in smaller systems, ac
cessible by exact methods, it is independent of system s
In the Coulomb case the error grows with the system size
L for A&50. For larger sizes the error appears to tend
wards a 1/L scaling, i.e., in proportion with the chargin
energy, and therefore diverges with respect to the mean
fective single-particle level spacing. This result for the Co
lomb interaction case appears to be nonphysical, and ma
an artifact of the model considered. However, the result t
Koopmans’ theorem is not recovered in the thermodynam
limit also occurs in the short-ranged interaction case. In b
cases we find that initially this error grows in proportion
U0

2, to be expected since the lowest order contribution
second order, but for strong interactions it grows mo
slowly in U0 , and that the disorder dependence of this er
is weak and nonmonotonic. We identify the source of t
error ^De& to be the fundamental difference between occ
pied and unoccupied states that is inherent in the SCHF
proximation. We introduce two improved applications
Koopmans’ theorem,̂D2

k2&, ^D2
k3&, which provide a good

approximation tô D2&, but not to^dD2&.
While preparing the manuscript, two related works a

peared that confirm some of the points discussed above.30,34

In both cases, fluctuations in the ground-state density
velop with r s ,24 and have significant effects of the additio
spectrum statistics. It remains to be seen whether these
sity modulations are an artifact of the SCHF approximati
~i.e., due the neglect of dynamical correlations!, or in fact
interesting results on the continuous transition to a Wign
type solid in disordered samples with short- and long-rang
bare interactions.
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