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Addition spectrum and Koopmans’ theorem for disordered quantum dots
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We investigate the addition spectrum of disordered quantum dots containing spinless interacting fermions
using the self-consistent Hartree-Fock approximation. We concentrate on the regirhewith finite dimen-
sionless conductangg We find that in this approximation the peak spacing fluctuations do not scale with the
mean single-particle level spacing for either Coulomb or nearest-neighbor interactiong yghtnWe also
show that Koopmans’ approximation to the addition spectrum can lead to errors that are of order the mean
level spacing or larger, both in the mean addition spectrum peak spacings, and in the peak spacing fluctuations.
[S0163-18209)09727-1

[. INTRODUCTION The position of the observed resonant tunnellitiRj)
conductance peaks can be related to the ground-state
We consider the response of the ground state of spinlesgnergy differenceuy=Eg(N,Vg) —Eg(N—1Vg) where
fermions to the addition or removal of a particle. To this end,Ec(N, V) is the ground-state energy of the dot wihelec-
we apply the self-consistent Hartree-FO&CHP approxi-  trons, at gate voltag¥s . The spacing between consecutive
mation: a nonperturbeﬁgive effective single-particle theory. Ppeaks is thus related to
Koopmans’ theoremstates that the single-particle SCHF
energy levels describe the affinity and ionization energy A2(N)=Ee(N+1.Ve) ~Eg(N.Ve)
spectra for the unoccupied and occupied states, respectively. —Eg(N,V5) +Eg(N—1V5). (1)
The approximation involved is that all the other particles do ) )
not react to this process. This approximation is generally/Vithin the constant interactio(Cl) model the ground-state
considered to be good when the single-particle wave funcEN€ray is simply the sum of filled single-particle energies
tions are extended: corrections to each wave function due tH&™) PIuS N(N— 1))/0/21 whereVy is the constant interac-
rearrangement of the system following the addition or reion- TakingVe=Vg, the peak spacing trivially reduces to
moval of a particle are expected to 1/N), whereN is _ _
the number of particles in the systénvioreover, these cor- Az(N)=e(N+1)=e(N)+Vo &)
rections to the wave functions are expected to disappear iand so, in the diffusive regime, displays shifted Wigner-
the limit of vanishing disordethaving, e.g., periodic bound- Dyson (WD) statistic§® up to corrections in one over the
ary condition$, where the single-particle wave functions are dimensionless conductancg;'® P(s)=7s/2 exp(—7s74)
free waves, as well as in the limit of vanishing interaction. Itfor zero-magnetic field, the case that we consider hsre;
is then loosely assumed that in the thermodynamic limit,=(A,—Vg)/A.
Koopmans’ theorem becomes exact even for disordered sys- Recent experiments on quantum dotshave shown that
tems, and should be sufficiently accurate for mesoscopiwhile the mean peak spacings are well described by the ClI
samples. It is evident however, that if the physical quantitiesnodel, the fluctuations are not described by Wigner-Dyson
at hand require an energy resolution of order the meastatistics. It is found that the distribution df, is roughly
single-particle level spacing), the validity of Koopmans' Gaussiar;®> with broader non-Gaussian tails seen in Ref. 5.
theorem should be reconsidered. In Refs. 3 and 4 the variance of the fluctuations was found to
Our analysis of Koopmans’ theorem for a quantum dot isbe considerably larger than that given by the WD distribu-
closely related to the addition spectrum of the latter: thetion. Further experimental observations, including correla-
spectrum of energy differences between states with total pations of peak heights~*3and the sensitivity to an Aharanov-
ticle number different by unity. We consider only the energyBohm flux*1%> are not consistent with random matrix
differences between ground states, which is experimentallyesults, and suggest a breakdown of the naive single-particle
accessible through resonant tunnefingand capacitané€  picture. To investigate this, one needs information on the
measurements at low bias and temperature. We stress thgtound-state wave function.
while our analysis here pertains to some aspects of the ex- Blanter et al’® have evaluated the fluctuations within a
periments, a direct comparison is not feasible: first, we conHartree-Fock framework, neglecting effects due to the
sider spinless electrons, and second, we consider disorderetange in gate voltagés to V. To this end they applied
systems in the diffusive regime; in Ref. 3 the mean-free pathhe random phase approximatiqRPA) to generate the
is of order the sample size, whereas in Ref. 5 the mean-frescreened interaction in the confined geometry, and assumed
path is much larger than the system size, and ergodicity ithat all Hartree-FockHF) level spacings, except for the
ensured by a chaotic boundary shape. Coulomb gap, are described by WD statistics. Implicitly as-
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suming Koopmans' theorehto be valid, and using wave mans’ theorem; in Sec. IV we present and discuss our nu-
function statistics established for noninteracting electrons immerical results, which are then summarized in the final sec-
a random potential, they calculated the fluctuationsAgf  tion.
beyond the ClI model. These additional fluctuations were
found to be parametrically smdih 1/g) and proportional to Il. THE MODEL
A. Hence, the total fluctuations i, were found to be pro-
portional toA. The analysis of Ref. 16 is consistent in the
limits g>1, rg<1. The parameterg characterizes the rela-
tive importance of interactions in the electronic system, and Uo
is defined as the mean electron separation in units of the H=, wc;'¢;—t>, cﬁ+”ci+72 Mijij ¢ ¢ cjci,
effective Bohr radius. : a g
Exact numerical calculations on small disordered Hots 3
did produce large Gaussian distributed fluctuations at experiwherei is the site indexy describes the set of nearest neigh-
mental densities. It was claimed that for strong enough interbors, w; is the random on-site energy in the range
action 8A,/(A,) is universal independent of the interaction [—W/2,W/2], andt the hopping matrix element, henceforth
strength and disorder, whe@\, denotes the typicalrms)  taken as unity. We study separately, both a Coulomb inter-
size of the fluctuations, and the angle brackets denote disoaction potential,
der averaging. Thisiniversalconstant was found to be ap-
proximately 0.10-0.17, to be compared with the WD result Mijij = 1ri—r;] (4)
for the CI model: 0.52/(A+V,). We note that the typical 44 a short-range potential plus a constant téim (see
experimental value for the charging enerdy, is much below),
larger thanA. The scaling with(A,) suggested by this
analysis is in stark contrast to the scaling withobtained in Miji; = (i i+, Mo). (5)
Ref. 16. . . . . -
Stopa has considered ballistic chaotic billiards numeri—We consider a 'Fwo-d|men5|ona2D) system with periodic
cally, using local density-functional theotyIn this case, it boundary conditions, and choose to define
was claimed that .the _quctuations ari§e due to ;trongly Iri— 1 |2=[L2sir(mn, /L) + L2sin(an, /L) ]/ 72,
scarred wave functions in the self-consistent potential. As a ! X 4 ey 6)
result of these scars, an asymmetric distributionAg{N)
was found, including strong correlations oWér It was then ~ Where 0, ,ny)=r;—r;.
further noted that what is actually measured., the change ~ All distances are measured in units of the lattice spac-
in the gate voltage between resonant tunneling peisksot ~ ing a; the physical parameters are therefddy=e* a,
simply related toA,(N) when the dependence ah(N) on  t=7%2/2ma’. The standard definition far; is given, for low
the gate voltage is strong. It was then claimed that a selffilling, by r=Uq/(ty4mv), where v=N/A is the fill-
consistent calculation chVg with A,(N) retrieves a sym- ing factor on the tight-binding lattice with sites. The di-
metric distribution ofA,(N), and reduces peak to peak cor- mensionless conductanag can be approximated, again
relations. for low filling, using the Born approximation. We find
A further suggestion that the coupling to the gate is im-g=96mv(t/W)?, which is valid for A/N>g>1. Here v
portant in understanding the fluctuations has been made witfy 1/4 throughout, so that;~0.568J,/t, andg~ 75(t/W)>2.
reference to the CI model, with WD statistics for the single- Having identified the parameters of our model with the
particle levelst® The authors claim that the required distri- standard ones employed in the theory of a continuous elec-
bution of A, can be generated, except for the non-Gaussiatron gas, we note that in the limit of small and 1§ the
tails, through the decorrelation of neighboring levels under deading order term for the typical interaction-dependent fluc-
parametric change in the Hamiltonigmediated byVg).  tuations predicted by Blantat all®is ~U,A/t\/g. For the
However, the degree of decorrelation inducedM; is left  torus geometry considered here, this contribution, being a
as a fitting parameter. surface term, vanishes identically. Their prediction then re-
In this paper, we present numerical calculations within theduces to typical fluctuations in addition to those of the Cli
SCHF approximation, considering larger samples than is feanodel to be of ordet,A/tg.
sible by exact diagonalizatichThis approximation has been The torus geometry has the advantage over geometries
seen to be quite good for the calculation of persistent curwith hard walls whereby in the former, the compensating
rents in similar system®. We show that fluctuations large background charge provides a trivial shift in all the site en-
compared to the single-particle level spacing can arise withergies, and can be removed. In a bounded dot, with an over-
out recourse to varying the sample shape, size or gate to datl charge, the excess charge may build up near the bound-
coupling, supposing these to lbelditional effects. We fur-  ary, depending on the position of nearby metallic plates and
ther demonstrate that approximating the addition spectrurgates. These effects are geometry spetifidpon adding an
spacings by applying Koopmans’ theorem can lead to largelectron, the average charge configuration may change con-
errors in the calculation of the spacing statistics. siderably(the configuration is strongly geometry dependent
We consider separately both a long-rafi@eulomb bare  As the gate voltage is varied to allow for the next electron
interaction and a short-rangeearest neighbobare interac- addition, the background potential could have changed caus-
tion. In Sec. I, we introduce our model in detail; in Sec. Ill, ing further charge rearrangement. While it is of great interest
we present a short discussion of the implications of Koop+o analyze this issuévhich may play an important role in

We address the following tight-binding Hamiltonian for
spinless fermions:
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the peak spacing fluctuations as well as undermining the ndare interaction unless one is considering very low-electron
ive single-particle picture by further reducing the accuracy ofdensities. Screening is indeed weak incaédectron gas in a
Koopmans’ theoref), we concentrate here on effects duevacuum, even at high density, but the SCHF procedure can-
entirely to theintrinsic rearrangementf the dot. From this not correctly generate screening by itself; while it can screen
point of view our analysis may be taken as an attempt tghe Hartree contributiongas discussed aboyeit does not
establish an upper bound criterion for the breakdown ofcreen the exchandBock term. However, we have verified
Koopmans’ theorem. In reality it may break down earlier duethat for the range of parameters considered here, fluctuations
to other nonuniversal factors. During the completion of thisin the Hartree energy are larger than the typical fluctuations
paper very recent experimental evidence for significant rearef the exchange energy. This suggests that the error made in
rangement has been producédt is argued that rearrange- not screening the exchange term correctly is not overly im-
ments due to adding an electron are far greater than reaportant.

rangements due merely to a change in shape.

When considering the short-range interaction, the mean |, |MPLICATIONS OF KOOPMANS' THEOREM
charging energy, in Eq. (2) must be put in by hand o
throughM . of Eq. (5). The way in which this is done de- Let us now consider the form &,, and approximations

pends on the physical situation being modeled, and is highljo it given by applying Koopmans’ theorem. We denote the
geometry dependeltvis-avis the gates We stress that the diagonal matrix elements of the one-body operators in Eq.
value of M. does not affect the physical results. We choose(3) by TV, and the antisymmetrized Hartree-Fock interaction
to insert by V,“Jl where hereafter the subscripts denote single-particle
states, and the superscrigtdenotes the number of particles
Uo 7) present and identifies the self-consistent basis of single-
[r—r'|" particle wave functions being employed'. For the torus
geometry, where the gate voltage and background potential
This value forM, is defined such that if the charge is uni- represent a trivial shift that can be omitted, the SCHF
formly spread over the dot, the average charging energies iground-state energy is given by
the Coulomb and nearest-neighbor cases roughly coincide.
This choice has been made for simplicity, but corresponds to N 1 N N 1 N
the premise that the interactions of tNeelectron gas with Ec(N)=2 el—=2 V=X TN+ -> V), (8
the positive background and with itself is the same for both j 27 j 2]
models considered. Exchange contrlbytlons, W_hlch tend t(avhereeP“ is thelth SCHE single-particle energy for a system
reduce the total charging energy, are included insofar as to . :
cancel both the on-site contributions to the energy, and th8f m particles in the ground state
unphysica(l3Zsoelf-interaction of electrons, but are otherwise m
neglectt_ad. The energy assoua‘;ed ,Wlth ch:':lr_gllng the sys- 6|m:-|—i'n+z VIT- )
tem uniformly is UgN(N—1)/(2A%)2 ,[r—r'|"* in the i
Coulomb case, antlN(N—1)/(2A%)(4A+M_A?) in the . ,
nearest-neighbor cage. Equati6n follows from equating Using Eq.(8), we find[cf. Eq. (1)]
these energies. This estimate can be systematically improved N
if the above premise is taken as the definition, not only by _ N+1 +N-1 N+1 N, +N—1
correctly accounting for the exchange contributions, but also A2(N)=Ts1 =Ty +§j: (7 =2+ T )
by considering single particle wave-function statistics in the
diffusive regime. In this case, wave-function correlation N
functions such ag|y;(r)|%y;(r")|?) are required in order +2 (VNI =VN D
the calculate the average electrostatic energy, where here and y
after (---) denotes averaging over the disorder ensemble. 1 N
In Ref. 16 it was assumed that ttiRPA) screening can be = (VNFTL_2yN4 N1, (10)
taken into account before constructing the Slater determinant 249 b
ground state, and therefore their result corresponds to a ) o
short-ranged effective interaction. It is not clear that this reAPPlying Koopmans® approximation corresponds to drop-
mains a consistent procedure when calculating the ground?ing the superscripts and employing an appropriate fixed ba-
state energy self-consistently. The reason for the inconsigiS- The theorem implies that the effective single-particle
tency is that many of the diagrams generated by the scHptatesdo not depend on the occupation of these states. In
approximation are already included in the RPA calculationParticular, Koopmans’ theorem yieldg.. ; for the minimum
of the screening, resulting in double counting. On the otheenergy required to add a particle to a systenNgparticles,
hand, if the screening is generated externédly., by close and ey for the maximum energy gained by removing a par-
metallic gatey then it is consistent to insert a short-rangedticle from the same system; in both cases the final state is a
bare interaction, and this is the point of view taken here. ground state. Clearly" as well as the ground-state energy
In some sense, the Coulomb interaction results can bdepend onm, even in Koopmans' approximation, through
considered as the opposite limit of the nearest-neighbor inthe number of terms in the sum in Eq8) and (8), respec-
teraction, and is of interest in this context. However, it istively. It is then easy to see that Koopmans’ approximation
more difficult to physically motivate the use of a Coulombic yields

M.=Vo/Ug—4/A, Vo=,

r,r’
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FIG. 1. A schematic diagram of the SCHF spectrdNodnd N
+1 particles.

AS(N)=€N,,— eN. (11)

We also consider two other approximationsAg that in-

volve calculating two self-consistent bases rather than ju

one

AN =N q—en (12)
13
All three estimateg11)—(13) coincide with A,(N) of Eg.

ks Ny N+ N
AP(N)=enii—en-
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FIG. 2. A schematic diagram representing the expectation value
of the Hamiltonian in the spaces df—1, N andN+1 Slater de-
terminants(superimposed Distances are only meaningful within a
given space. In order to define distances between two Slater deter-
minants in two different spaces, i.&/N and¥N*?, we include the
first unoccupied state wit'N (Ref. 21). In this way Koopmans’
theorem is exact when the two Slater determinants coincide. The
SCHF solutions correspond to minima in these surfaces. It can be
seen that the Koopmans' approximatioss, ; and ej to the addi-
tion energyEg(N+1)—Eg(N) are upper and lower bounds, re-

pectively. Similarly for the addition enerdys(N)—Eg(N—1).
he definition of the Koopmans’ approximationAg given by Eg.
(121) can be seen to contain the difference between these bounds.

energiesen 11 and el are lower bounds to the addition ener-

gies. The approximatiomgl, is therefore obtained by sub-

tracting a lower boundd)) from an upper bounde. ,).
As a result, the average value contains the average difference

('10) if Koopmans' theorem holds. To connect with the nota-petween the two bounds in addition to the correct m&an
tion of Ref. 16, and to demonstrate the difference betweely js generally assumed that the difference between the two
the above three approximations and the fully self-consistenoyngs vanishes in the thermodynamic limit, and therefore

result, we provide a schematic diagram of the SCHF spectr

in Fig. 1.

Since the self-consistent basisNfparticles provides the
lowest energy forN occupied levels, and similarly fol
—1 particles, the following relations are clear

N-1 N2 N-1 LN-1
Ei T|N+§; V”?EI TiN*l—i-EiEj V”*l

N

N 1 N
i i

1 N
TN 1+ E; vith o (14
Combining these equations, we find th&t(N)EA';l(N)
—Agz(N)zo, or equivalently
Ae(N)=eN 1—eN=0. (15)
The equalities in Eqg14) and(15) only hold when no modi-

&8 doesAe. On the other handA;2 corresponds to the dif-
ference of two upper bounds to the two relevant addition
energies. Regardless of the quality of the upper bound, so
long as it is not strongly dependent on the number of par-
ticles present, both the particle number and disorder aver-
aged results are good. The third approximatiomgé corre-

sponds to the difference of two lower bounds, and N{é is
good in the mean. It is for this reason that we introduce these
alternative approximations. It is easy to see théf—(N)

—A;3(N)=A6(N+ 1) and therefore provides no further in-
formation. On the other hand, the fluctuationsAéP can be

different from those ongz, and so are investigated sepa-
rately. We note that in a clean systenr abelow the Wigner
crystal transitiorf? the minima would align in Fig. 2, reflect-
ing the validity of Koopmans’ theorem in that limit.

Let us briefly discuss the non-self-consistent single-

fication of the effective single-particle wave functions occursParticle picture, for which the Koopmans’ approximations
following the addition of an electron. In a disordered dot, in(11)—(13) and Eq.(10) all coincide
which there are no spatial symmetries, such a modification

will always take place, and sfve can be considered strictly

positive.

The differenceAe provides a measure of the effectiveness

N-1
A2(N):TN+1_TN+; (Vn+1j= Vnj) +Vnsan-
(16)

of Koopmans’ theorem. To demonstrate this we present, in
Fig. 2, a schematic diagram of the surface of expectatiomere, the terrmon-self-consistent approximatisafers to a
values of the many-body Hamiltonian in the space of Slatescheme where a set of effective single-particle states is given

determinants oN—1, N, and N+ 1 particles. The SCHF

(e.g., by solving thé\-electron SCHF probleimand utilized

ground states correspond to minima in these surfaces. Frofar any number of particles present in the system. The

the diagram, it is clear that the energi€$, ; and ey * are

nearest-neighbor spacings between levels that are both occu-

upper bounds to the respective addition energies, and thgied or unoccupied has a similar form
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N f?"* j —"==.'_ T
i1 €ﬁ=Tm+1—Tm+§j: (Vmt1j—Vmj), (17 . :i‘; A w‘\ U=00 B >>_> Ug=6.0 -
Z o
020 | E
the major difference between Eq46) and(17) is the addi- 0.00 n | M
tional unbalancedmatrix elemen.t\/Nf 1IN appeari_ng in Eq.. 060 | 7" '\ u2o 1 =>>5 U=80
(16). Let us also suppose that in this simple single-particle Z oa0 | f] ’-; 17 N ]
scheme the electrons interact with a short-ranged effective o020 | M M ]
interaction. Blanteet al® introduce the hypothesis that the 0.00 . I ,
(normalized spacingg17) andA,— Vy 1y 0bey WD statis- ool MMM umso 1 f({TTHY us100 |
tics up to corrections in §. Further assuming that the wave- Z o0 | I 1 N
function correlations are still close to those of noninteracting * 020 | >M 1
particles leads, for the short-ranged effective interaction, to 000
the result Vary;;)~(UoA/tg)?,? so that the interaction- @ °° oo 20 00 0 20
dependent contribution téA, scales likeUoA/tg.'® This
analysis is valid in the regime,<1 andg> 1, implying that AT ' TR
Koopmans' theorem is a good approximation in that regime. ~ _ °®[ /] \\ Vo0 . e
2 o040 T AN
IV. RESULTS AND DISCUSSION o |
7/'\ ool
In this section we present and discuss the results of the ~_ °®r AR - W20 1 JH M Us=80
numerical simulations for both the nearest-neighbor and the & %40 I I )
Coulomb bare potentials. To make each subsection self- oo g M 1
contained there is some repetition. 000 ; v
0.60 | 7' >>> U=40 + A '-__ U=100
. . Z 40| N + 1
A. Short-range interactions 020 | 1 N
We consider first the case of a nearest-neighbor bare in- 0.00
. . . . . . 0.0 1.0 20 0.0 1.0 2.0
teraction potential as defined in E&). We begin by plotting (b) s s
the distributions of both the level spacings?) and the gap
(16) of the SCHF spectrum for finites, g. In this casg16) 040 | . U#j,o ]
and(17) are calculated in the self-consistent basidNopar- - 030 ATl = ]
ticles. In Fig. 3, it is seen that the normalized level spacings = 020 I 1
between occupied states show an increasing deviation from oo Th'h‘»»
WD to Poisson statistics a$, is increased. This is also true gx L [k Ueso |
for the unoccupied states, but to a much greater extent. The  _ 030 | AT ’
difference between occupied and unoccupied states in the & oz h
SCHF approximation will be discussed in greater detail later. 010 ¢ Jfﬁ
We interpret the tendency towards Poisson statistics as a sig- gx o _ o100 |
nature of the incipient localization of the effective one- _ ool AT T
particle states. & 020 IR
The normalized gapﬁ(gl) distribution tends towards a o0 |
more symmetric distribution that is approximately Gaussian © T 0;0 - 20

asUy is increased.

We have also investigated the gaf,] distribution ob- o ,
tained within the fully self-consistent scheme, which we FIG- 3. SCHF level spacing distributio{s] for (a) OCCUpILEd
show in Fig. 4. We find that alg, is increased, the distribu- States,(b) unoccupied statess=AE/(AE), and (c) the gapA;',

k. k k. T . .
tion evolves from a WD form to a more symmetric distribu- Wheres=(A,'—(A;))/6A,. The solid lines show the WD distri-
tion similar to a Gaussian. bution, and in(c) the dashed line follows a Gaussian law. The

We shall concentrate first on the mean values of thes&@mples were 89 lattices with 14 electrons and nearest-neighbor
distributions. A typical dependence 6,) on the interac- interactions; W=2. r,~0.58J,/t. The statistics were obtained
. . - : f ble of 2500 les.
tion parametet),, is plotted in Fig. 5. Wh|Ie(A';2> and(A?) fom an ensemble o samples

provide a good approximation, we see a strong deviation ofjain the deviations ofA,) from the Cl model prediction:
(A;l). For all the system sizes considered, this effect occurghey reduce the average addition energy by up lth, 4At
at rg~0O(1). Results for the Cl model, evaluated as de-when v<1/2 for a commensurate lattice. Whei>1/2 the
scribed above, are plotted for comparison. Deviations of ormean charging energy can be correspondingly increased.
der O(Uy/A) from the Cl model appear abowg,~2 (rg We are also now in a position to understand why the level
~1). spacing statistics between unoccupied states show an in-
Elsewhereé* we show that the ground state develops largecreased tendency towards a Poisson distribution: the density
density modulations all, is increased beyonds~O(1). modulations that appear in the ground state alter the potential
These ground-state charge density modulati@BM’'s) ex-  felt by the unoccupied states. These modulations are not spa-



2546 PAUL N. WALKER, GILLES MONTAMBAUX, AND YUVAL GEFEN PRB 60

T T T T 2

. 10 :
0.40 GO U,=0.5
w 030 BEU,=1.0
o 020 o U=2.0
o040 | 10’ | 5AU=4.0
0.00 <G<1U,=6.0 E
: ' -7 U,=8.0
0.40 | 1 B2 Uy=10.0
w 030 <
& o020 3 100k _
0.10 [ v
0.00 |
0.40 ]
N Al -1
w 030 A, MR T R o ] 10 E
o 020 f N T N
010 | JAZ - 1 7 "
0.00 k== : TPE ‘ ! |
-2.0 0.0 2.0 -2.0 0.0 2.0 1072 .
s s 10 100

FIG. 4. DistributionsP[s] wheres=(A,—{A5))/ 5A, for vari-
ous interaction strengths obtained self-consistently for the nearest- FIG. 6. (A€)/A against the sample arex after 75 to 1000
neighbor interaction. The solid line shows the WD distribution, thedisorder realizations. The dotted lines are proportionalAt@s
dashed line shows the Gaussian distribution. The samples w&re 7 guides for the eyer~U,/2t.
lattices withN= 15, W=4, and the statistics were obtained from an

ensemble of 3000 sampleg~0.58,/t. the torus due to the restoration of translational symmetry.
_ _ _ _ However, whenW—0, the spectrum develops many near
tially ordered, as is demonstrated in Ref. 24. Henc&)@s  degeneracies such that the effective perturbation dik tie
increased, the unoccupied states see an effective potentiglagnified adv— 0. In the limitr.—0, g>1, the typical size
with increasingly strong modulations and tend to localize,of the matrix element¥;;,, , which drive the rearrangement
whence the tendency towards a Poissonian distribution.  gcgle like 8Viji ~rA/g, S thus, one expects that in this re-

Let us consider the error i(”A';) in more detail. As can gime (Ae) should increase with disorder. We find only a
be seen in Fig. 6(Ae)/A increases with the system size for weak increase with disorder fog=<1.

lattices up to about#8; for larger systemsX=50) it seems In Fig. 8, we plot the interaction dependence(ak)/A.
that the error becomes proportional 40 and is of orderA ~ We find that at smalUy, (A €)/Ax(Uy/t)?, with deviations
whenr is of order unity. for largerUg. In fact, this quadratic behavior can be under-

We find that the nature of the disorder dependenc@ef  stood using second-order perturbation theory. To see this, we
depends on the interaction strength, as seen in Fig. 7. Thefer back to the schematic diagram of Fig. 2. A Shitic-
change in dependence occurs at interactions strengths cor@4rs in the ground-state configuration when a particle is
sponding tor~1 for all the sample sizes considered. Oneadded, which is represented by a misalignment of the
might be surprised that deviations from Koopmans' theoremminima. This shift is, to leading order, linear W,. Since
do not smoothly decrease &—0 since, in the limit of the SCHF ground-state energy is a minimum in the expecta-
vanishing disorder, Koopmans’ theorem becomes exact otion value of the Hamiltonian, the difference of ground-state

energies for the two configurations will be quadratic in this
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FIG. 5. Typical result for the mean Coulomb gap averaged over

400 disorder realizations. Her®y=4, the lattice is 98 andN FIG. 7. (A€)/t against disorde¥V averaged over 200 disorder
=15. The dashed line is the CI result~0.62J,/t. realizations for a 1410 lattice withN=28. rg~0.54U,/t.



PRB 60 ADDITION SPECTRUM AND KOOPMANS’ THEOREM FOR . .. 2547

10° . 6.0 T T T T )
o—o12412
G—811*10 oa,
—09'8 ok
10' | &~—=a87 ] Azkz g
4+—<16"6 a0l D4, ]
v— 55 : A Az"a
o]
o)
< <
N 0
% 100 F E E o
8
20} o] A A
A
10" | i A
> -]
-
) 0.0 1 1 1 1
107 : m 0.0 2.0 4.0 6.0 8.0 10.0
Uyt
Ut

FIG. 9. Typical result for the typical fluctuations of the Cou-
lomb gap averaged over 400 disorder realizations. Hafe 4, the
lattice is %8 andN=15. r;~0.62J,/t.

FIG. 8. (A€)/A againstU, after 75 to 1000 disorder realiza-
tions, for a range of sample sizes=1/4, on a log-log scale. The
dashed line is a plot ofA €)/AxU3/t?, re=U/2t.

shift. Furthermore, the local curvature tensor is independerf® limit of strong interactions the charge segregates at a
of U, when the interaction matrix elements are small comXinetic-energy cost of orded(t), andU, plays no further

pared to the mean level spaciffgThus, (Ae) scales IikeUS role in the ground-state energy fluctuations. The fluctuations
in the perturbative regime. The indication is that second orineréfore become sublineary, and eventually saturate to

der perturbation theory is qualitatively good even figr- 1. an interaction independent value. Moreover, the results for
We note that since both the shift and the local curvaturdh€ fluctuations become strongly geometry and filling factor
tensor depend on the disorder, there is no such simple dependent® We note that the observed saturation is in fact

dependence. an artifact of thg sharp_ cutoff in the interactipn range: with a
To summarize the results for the mean Coulomb gap, Wéonger—ranged_ Interaction, charge segregation cannot elimi-
find that Koopmans’ approximatiofL1) makes an error in nate _contrlbutlons due to the mteractuﬁalthough it may
the mean charging energy, which for smaji A<50, and significantly reduce Fhe]m and _the_fluctuatlons W_ould no
fixed disorder scales likéAe)ocr2. There is also evidence longer .be bqunded simply by kinetic energy con5|derat!ons.
that for the larger sizesA=50), far beyond that accessible In Fig. 9, it can also be S'een that flor stronkg Interactions,
by exact diagonalization, thét\ e)er2A. The latter depen- the fluctuations Te overestimated h)é andA?, and un-
dence is consistent with the expectation that for sufficientlyderestimated byA;°. This can be understood within the pic-
smallrg, 1/g, perturbation theory is valid when the effective ture given above of charge-density modulations. In this case,
interaction is short ranged. We find thi@e)~O(A) when  an occupied state that is removed non-self-consistently will
r<~0O(1). Tounderstand this result, we return to E¢s6)  Yield less energy than can be gained when the system is
and(17), and fix the basis to be the self-consistent oneNfor allowed to reorganize, but the typical size of this error satu-
particles, so that E¢16) now describes\'ﬁl. Since we have ratesto an interaction-i_ndependent value for the same reason
verified that the level spacingd7) show nearest-neighbor that the SCHF fluctuations do. If, on the other hand, an un-
separation statistics that are close to WD fomai# N, with ~ 0ccupied state is occupied non-self-consistently, it is not pos-
an approximately constant density of states, we are led t8ible to avoid contributions from the short-ranged part of the
conclude thatAe) arises due to the fundamental difference Potential (we do not consider strongly Anderson localized
between occupied and unoccupied levels in the SCHF agstates at very low filling and the typical error increases
proximation. In short, Wh"G(VmHj—ij) for m#N van- indefinitely with the interaction strength. As a resm§3 un-
ishes as eXpeCtec('VN-%—lj_ij) does not. IndeedAe)  derestimates the fluctuations by an amount that saturates to
ocEJ!\‘_1<VN+1j—VNj>_ an interaction-independent value, whereas fluctuations in the

Tuming now to the fluctuations it,, we plot an ex- charging energy predicted by5" and A5 grow with U,
ample result in Fig. 9. The most striking behavior is theindefinitely; the errors made in employing the latter approxi-
asymptotic saturation of the fluctuatiorigerified but not mations diverge with the interaction strength.
shown for even stronger interactionés with the deviations Concentrating now on the fully self-consistent results, the
of (A,) from the Cl model, this occurs over the same rang€dluctuations in the charging energy are plotted against the
of interactions for all the system sizes considered, and isample size in Fig. 10. As expected, for very weak interac-
associated with the appearance of CDM’s. Over the range dfons, the typical fluctuations vanish likeAL/ being domi-
interaction strengths shown the fluctuations have not comnated by kinetic-energy fluctuations. For stronger interac-
pletely saturated, but the ground-state density modulationsons, this dependence no longer holds: fgg1 our results
are already preseft, such that, at low filling, the short- are in broad agreement with Ref. 16, but do not agree with
ranged contribution to the interaction energy is reduced. Irtheir suggestion that the typical fluctuations remain propor-
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FIG. 10. 6A, /A againstA, with W=4 andv~1/4, after 75 to FIG. 11. A typical result foréA,/t againstW, averaged over
1000 disorder realizations. The RMT result is shown as a dotte@00 disorder realizations. Here, the sample is I, N=28. r,
line, the dashed line is proportional kg and the dot-dashed line is ~0.54U,/t.
proportional toA. rg=Ug/2t.

tion is even closer to WD. On the other hand, the normalized
tional to A for rg>0O(1). This appears to conflict with a gap distribution clearly tends towards a more symmetric dis-
simple single-parameter scaling argum&rithe appearance tribution that is approximately Gaussian.
of fluctuations that do not scale with coincides with the We have also investigated the gaf,{ distribution ob-
appearance of density modulations. We stress that in thigined within the fully self-consistent scheme, which we
model there can be no physical connection between the anshow in Fig. 13. Again, we find that a4, is increased, the
plitude of the constant interaction and the amplitude of thelistribution evolves from a WD form to a symmetric distri-
fluctuations. bution similar to a Gaussian.

For strong interactions the dominant disorder dependence We shall concentrate first on the mean values obtained
appears to develop only fiW=4, where it is consistent with from these distributions, and will come to the variance later
the emergence of a linear dependence to be expected froim the section. Figure 14 shows a comparisoq &%), with
spatial rearrangements in the disorder potential. An examplthe various approximations to it, plotted agaikkf. While
is plotted in Fig. 11. We reiterate that we also find strong(Ak2> and(A 3> provide a good approximation @\ ,), we
geometry and filling-factor dependences. It is extremely dif- see a clear deviation fAX 1> Results for the Cl model,

ficult to extract disorder scalings in such small systems beevaluated as described above, are plotted for comparison
causeW/t is required to be fairly large to generate diffusive That the Cl model is good in the mean indicates that the

motion, which in turn stretches the spectrum in the tails. This Single-particle wave functions remain rouahly uniformiv dis-
can be seen at weak interaction, where one would hav ge-p gnly y

. . . ffibuted over the dot for alts considered.
Bop_eg)to see a disorder-independent plateal (ine, 5A, at In Fig. 15 we pIot(Ae>/(A2> against the sample arda
0_ .

To summarize then, we findsA,~0.52A+arA :‘(or ar:c mterr_nedmte dlS(knzrder strengtIW(:4)_. Since we
+O(r ), wherea is an undetermined constant or function of now from Fig. 14 thatA;*)~(4,), then(Ae) is very close

disorder strength. We note that the disorder scaling is ndio (A5 —(A,), the total error made by applying Koopmans'
clear because of the residual dependenca oh W. theorem. ForA=<50, we find that for a fixed interaction
strength(Ae)cL((Ae)/{A,)xcA). For larger samples with
Uy=2 we find a weakening in the dependence, but see no
indication that it will vanish relative ta. The result that the
We consider here the results for the Coulombic bare podeviations from Koopmans' approximation increase with
tential. system sizéwhen compared td), showing no sign of satu-
We first study the distributions of both the level spacingsration, is admittedly strange, and may be an artifact of the
(17) and the gafd16) of the SCHF spectrum at finite;, g. specific model considered here. However, the result that
In this case, Egs(16) and (17) are calculated in the self- Koopmans’ approximation appears to fail even as the system
consistent basis dfl particles. In Fig. 12 it is seen that the size tends towards the thermodynamic limit, is in line with
normalized level spacings between occupied states obey staur findings for the short-ranged cae.
tistics very close to WD for all interaction strengths consid- It is interesting to see how the error depends on disorder.
ered. Between occupied statgsig. 12a)] there is a mild In Fig. 16, we plot(Ae€)/t for a range of disorder strengths:
deviation towards Poisson statistics for the strongest interathe disorder dependence as a function of interaction is weak,
tion strengths, indicative of a weak tendency towards localbut not simple. Similarly to the short-ranged case, the devia-
ization. Between unoccupied stafésg. 12b)] the distribu-  tions from Koopmans’ approximation do not decrease for

B. Long-range interactions
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2 04y h T I 1 that of the short-ranged case: the indication is that second-
02y ,f M ] order perturbation theory is qualitatively good even fgr
%0 1.0 20 0.0 1.0 2.0 ~1.
(b) ¢ y To summarize the results for the mean Coulomb gap, we
- find that Koopmans’ approximatiofll) makes an error in
_ g;z AR hroo ik e the mean charging energy, which for smelland L, and
ol AN /] i3 ] fixed disorder scales likeA e)ocr2L. There is also evidence
2-;3 ]7 1}% ] that for the larger sizesA=50), far beyond that accessible
odof . Us20 _ad], ues0 by exact diagonalization, that the size dependence vanishes:
gonf . 1 /AL (A€)y=r2. In contrast to the naive expectation however, we
. gfg 2 “m wﬁ i find no sign of this error vanishing relative toin the ther-
0.00 f Mo ] M modynamic limit. This is due to the fundamental difference
040 | o~ Umso P 4] umt00 between occupied and unoccupied SCHF levels already dis-
z g:g i A1 TR 1 /A cussed in the short-ranged case.
30
000 =70 0.0 Py —— 0.0 20 150 '
(© s s
o
FIG. 12. SCHF level spacing distributio”R$s] for (a) occupied OA2k
states,(b) unoccupied states=AE/(AE), and (c) the gapAzl, Ca,t <&
wheres= (A51—(A%)/SA%L The solid lines show the WD distri- 100 | 04,® .
bution, and in(c) the dashed line follows a Gaussian law. The a AASS &
samples were 89 lattices with 14 electrons and Coulomb interac- x
tions; W=2. ri~0.58J,/t. The statistics were obtained from an & o .8
ensemble of 2500 samples. § /,@//
50 | o A i
small disorder. This occurs for the same reasons as for thi ’/@/”
short-ranged case. Here too the typical size of the matrix o .|
elementsVj; , which drive the rearrangement scale in- e
versely withg. One thus expects that in this regini&e) o
should increase with disorder, this is indeed seen in the fig- 0@@ w .
ure. ForUy=4t, Ae decreases with disorder at sufficiently S W 10 15

large W, with evidence of a turning pointdA e/dW=0) at
Ug=4t, W~4t.

In Fig. 17 we plot the interaction dependence(ak)/A.
We find that at small, (A€)/Ax(Uq/t)?, with deviations

FIG. 14. Typical results for the mean Coulomb gap under vari-
ous approximation schemes, averaged over 400 disorder realiza-
tions. Here W=4, the lattice is 1410 andN=28. r;~0.54J, /t.
for largerU,. This quadratic behavior has the same origin asThe dashed line is the Cl result for the mean.
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FIG. 15.(A€)/{A,) against the sample ardg W=4, v~1/4, FIG. 17. (A€)/A againstU,/t after 300 to 1000 disorder real-

and the results averaged over 300 to 1000 disorder realizations, fazations, for a range of sample sizes, all at approximately quarter
a range of interaction strengths. The dashed lines shodilling with W=4. r;~U,/2t. The dashed line is proportional to
(Ae){A,)xA as guides for the eye ~Uy/2t. us.

We now consider the fluctuations in,. As an example are not proportional ta for rsL~O(1).*® From Fig. 20 it
of the interaction dependence of these fluctuations in th€éan be seen that the curvéd,/(A,) do not saturate to a
various approximation schemes, we plot the results for gonstant as suggested in Ref. 3, although to see this clearly
fixed size in Fig. 18. It is seen that applying Koopmans’'one has to consider larger sample sizes than are accessible by
theorem in the forms(11)—(13) results in considerably exact calculations. The curvé,/(A,) appears to take on
smaller fluctuations than the fully self-consistent calculationthe approximate form of a constant term plus a linear term

To quantify this error, we p|05A';2/5A2 in Fig. 19, which  for rsL~0O(1). Theconstant contribution identified by Si-

3 . . . . .
shows that the relative error initially increases with interac-Yanet al,” is here, contrary to their claim, nonuniverseg.,

tion strength, but shows signs of saturating. The value of thé IS disorder dependent , _
saturation appears to increase towards unity as the system !N Fig. 21 we plotéA,/(A;) against disorder for the 10
size is increased. X 11 lattice with a range of interaction strengths.@g-: Oit .

We now concentrate on the fluctuations of the fully self-iS Seen that folW=6 the systems obeys WD statistics quite
consistent peak spaciny,. For comparison with Ref. 3 itis Well. For the sample size considered we find that in the re-
useful to plotdA ,/(A,) against the interaction strength for a 9ime 0.55U(=6.0 (0.255r=3.0) 6A;1(Az)>W, and at
range of sample sizes. This is done in Fig. 20. In the inset wgTONger interactions this dependence weakens. The interme-
plot 5A,/A, which shows that the peak spacing fluctuationsdiate dependenceiA;/(Az)=W, is consistent with the de-

pendenc®A2/<A2)oc1/\/§ recently observed independently
| by Bonci and Berkovit® for the Buminovich Stadium bil-

10 = & liard. Analysis of Fig. 20 leads to the conclusion that the
= quadratic contributioriin U,) to A, is independent of dis-
100 T < < Ty order, which is consistent with Fig. 21.
b . A To identify the system size scaling of the various contri-
G-OU=0.5 butions we plot,§A,/A againstA in Fig. 22. ForU,=0 the
107 d—FEU=1.0 M i system obeys WD statistics antl\,/A is independent of
o Up=2.0 size. The regime over which the fluctuations are approxi-

mately proportional to the mean charging enefthe con-

stant contribution taSA,/(A,) alluded to above, which cor-

responds to a/A dependence in the figuredepends on the

system size. As could be seen in Fig. 20 another term begins

i to dominate the fluctuations at largeg, which is quadratic

in Uy, this term increases more rapidly with the system size,

and so dominates at lowéJ, in larger systems. Over the

range of sizes considered, this term appears to scalé fike

The cross-over in dominance therefore occurd gt 1/L for

fixed disorder strength; clearly the quadratic term will domi-
FIG. 16.(A€)/A against disordew/t averaged over ensembles nate in large samples. The increasedifi, /A with system

of 300, 1% 10 samples with 28 particles,~0.54J,/t. The dashed size appears to be an artifact of using the unscreened Cou-

line is proportional toyW. lomb interaction in the Hamiltonian.
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FIG. 18. Typical results foA,/A under various approxima- F_|G'. 20. 5A;/(A,) againstUg/t, after 300. to 1000 disorder
realizations. The legend shows the sample size\&hd~1/4: rg

tion schemes, averaged over 300 disorder realizations. Wére, _ 0
—4, the lattice is 1410 andN=28, r.~0.54J,/t. The Koop- ~Uy/2t. The random matrix theory result Bty=0 is 5A,/(A,)
=~0.52. Inset:5A, /A for the same data set.

mans’ approximants can be seen to underestimate the fluctuations.

Summarizing the results presented in Figs. 20-22, and theystem size is increased. We can neither confirm nor counter
above discussion, we find far,L=0(1) an approximate this argument, but have verified that fog<5 the fluctua-

form: 5A2~O.5m+a<A2>/\@+br§ where a,b are con- tions in the exchange contribution are smaller than those of

stants. One would normally expect the fluctuations to be Iin-the direct contribution.

ear in the interaction strengthe.,b=0). A possible source
for such a quadratic interaction dependence in the typical V. SUMMARY
fluctuations is the development of correlations that grow like
r2 in products of eight wave functions. Elsewhérave

S
present evidence for increased fluctuations in the groun

We have investigated the addition spectra of disordered
fuantum dots employing an effective single-particle approxi-

state density in this regime, as compared to a noninteractin at||(()_n, both using ’ahfully self-conssten;lanalyss,_(;:md by
system. It is not yet clear whether this result is an artifact of''VOKINg Koopmans'’ theorem. \We were able to consider sys-

the SCHF approximatiotwhich has also very recently been €M Sizes with up to 144 sites, and 37 particles, compared to
observed in D systemé&! using a similar approximation the latest exact calculations on samples with 24 sites and 6

schemg, or a genuine physical effect particles® The larger sample size also allows us to consider
Finally, it is worth noting that since the exchange interac-Smaller values of than exact calculations while retaining an
tion is not correctly screened, that errors in the SCl_”:ergod|c noninteracting limit, and therefore approaches the

scheme might be expected to diverge with respedt &3 the 060
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FIG. 21. 8A,/{(A,) againstW/t averaged over 300 %01
FIG. 19. 6A';2/5A2 againstU, for a range of sample sizes, at samples witiN=28. r;~0.54J,/t. Results for other sample sizes
approximately quarter fillingr s~ U/2t. The statistics are obtained were similar. The C+FRMT result forU,=0 is plotted as a dotted
from 300 to 1000 disorder realizations for each sample size. line.
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" to the development of charge-density modulatitighe lat-

ter is not detectable in the small systems examined numeri-
cally in Ref. 3, and so our results are not numerically incon-
sistent with exact calculatioriswWhile we do not include
spin, the observed decrease in the fluctuations with con-
sistent with the experimental indicaticrsthat in cleaner
samples the fluctuations are smaller.

We show that a direct application of Koopmans’ theorem
overestimategA,). This overestimate, a manifestation of
the breakdown of Koopmans' approximation, does not van-
ish on the scale oA in the thermodynamic limit. The error
seems to scale differently with sample size for sample areas
above or belowA~50. In the nearest-neighbor case, with
A=50, this error scales with, but in smaller systems, ac-
cessible by exact methods, it is independent of system size.
In the Coulomb case the error grows with the system size as
L for A<50. For larger sizes the error appears to tend to-
wards a 1L scaling, i.e., in proportion with the charging

FIG. 22. 5A,/A against sample area averaged over 300 to €nergy, and therefore diverges with respect to the mean ef-
1000 disorder configurations. The dotted line shows theMT  fective single-particle level spacing. This result for the Cou-

result, the dashed line is proportional{®, and the dot-dashed line 10mb interaction case appears to be nonphysical, and may be
is proportional toA. r¢~Uy/2t. an artifact of the model considered. However, the result that

Koopmans’ theorem is not recovered in the thermodynamic
experimental parameters more closely. The inclusion of spitimit also occurs in the short-ranged interaction case. In both
in a consistent manner is left for a future project. cases we find that initially this error grows in proportion to

Our SCHF results for the typical fluctuations of the peakU3, to be expected since the lowest order contribution is
spacings for particles possessing short-ranged bare interasecond order, but for strong interactions it grows more
tions are entirely different from the results for long-rangedslowly in Uy, and that the disorder dependence of this error
bare interactions. In the short-ranged case, we find the sanie weak and nonmonotonic. We identify the source of the
scaling as Ref. 16 for very weak interactiomg<£1), but for  error (Ae) to be the fundamental difference between occu-
r<=1 deviations from this behavior become significant andpied and unoccupied states that is inherent in the SCHF ap-
coincide with the appearance of interaction-induced densityproximation. We introduce two improved applications of
modulations. We find no size dependence in the onset akoopmans’ theorem(Ag"’), (A;3>, which provide a good
these effects. We find that strong filling factor and geome”yapproximation to{A,), but not to( SA,).
dependences arise due to these density fluctuations, andyhile preparing the manuscript, two related works ap-
therefore do not expect that the disorder ensemble statisticssared that confirm some of the points discussed affide.
can be mapped to statistics over the ensemble of filling fac- | poth cases, fluctuations in the ground-state density de-
tors: ergodicity is lost. We suggest that employing a shortyejop withr,24 and have significant effects of the addition
ranged bare interaction in a self-consistent scheme is ot &hectrym statistics. It remains to be seen whether these den-
appropriate model for the quantum dots of Refs. 35, 11-14jty modulations are an artifact of the SCHF approximation
for whichr>1, but may be a useful model for dot geom- (j e due the neglect of dynamical correlatipner in fact
etries sandwiched between very close metallic gates, whiCfhteresting results on the continuous transition to a Wigner-

provide a good external source of screeriifg In this re-  tyne solid in disordered samples with short- and long-ranged
spect, we identify some experiments on the addition spegyare interactions.

trum that possess a metallic sourbeavily dopech* GaAs
and drain(Cr/Au), at separations of the order of the average
interparticle spacing in the dbt’

In the Coulomb case the SCHF approximation Ag We acknowledge discussions with H. Orland and F. von
yields typical fluctuations that do not scale withfor r¢  Oppen in the early stages of this project, as well as with Ya.
=1/L. In Ref. 3 itis claimed thabA, is universally propor-  Blanter, S. Levit, A. Mirlin, D. Orgad and F. Piechon. We
tional to (A,) for strong interactiongbut still far from the  acknowledge support from the EU TMR, the German-Israeli
accepted Wigner Crystal transition pgintn contrast, we Foundation, the U.S.-Israel Binational-Science Foundation,
find, in addition to the small interaction-independent contri-and the Minerva Foundation. One of (%.G.) would also
bution, a contribution t&A , that is proportional tQA2>/\/§ like to acknowledge support from the EPSRC Grant No. GR/
(i.e., nonuniversa) and a further contribution that scales like L67103. Much of the numerical work was performed using
r2, which is independent of disorder, and appears to be dutbRIS facilities.
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