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Boundary Conditions at the Mobility Edge
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It is shown that the universal behavior of the spacing distribution of nearest energy levels at the metal-
insulator Anderson transition is indeed dependent on the boundary conditions. The spectral rigidity
32(E) also depends on the boundary conditions, but this dependence vanishes at highFendriig
implies that the multifractal exponeiit, of the participation ratio of wave functions in the bulk is not
affected by the boundary conditions. [S0031-9007(98)06779-9]

PACS numbers: 72.15.Rn, 05.45.+b, 73.23.—-b

The spectral analysis of disordered conductors has beda the TLCF:32(E) = 2 fg(E — 5)K(s)ds. Surprisingly
proven recently to be a useful tool to probe the nature of thenough, the numerical studies which lead to the same shape
eigenstates [1-4]. In the diffusive (metallic) regime, theof the distributionP(s) at the transition have apparently all
conductanceg scales linearly with the size of the system, been performed usingeriodic boundary conditions In
and the wave functions are delocalized over the samplehis paper, we calculat(s) at the transition for the same
The spectral correlations have been shown to be those éfamiltonian, with different boundary conditionéBCs).
random Gaussian matrices [5], with large deviations abov&he Hamiltonian is taken as
the Thouless energ§. = /i/tp = hD/L? [6], whereD
is the diffusion coefficient andp is the time nee_ded for H = Zsiclfrci _ tZ(c;rcj + C;rcl_)_ (1)

a wave packet to cross the sample. In particular, the - in

distribution P(s) of spacings between nearest levels is

very well fitted by the Wigner—surmise characteristic of The sitesi belong to a 3D cubic lattice. Only transfer
chaotic systems [7P(s) = (7/2)s exd — (7 /4)s>]where  between nearest neighbalis j) is considered. The site

s is written in units of mean level spacing [8]. These energiese; are chosen independently from a symmetric
deviations of ordet /g2 [9] become negligible in the limit box distribution of widthW. The metal-insulator transi-
of largeL. In the localized phase, in the limit — o, the  tion occurs at the center of the band for the critical value
levels become completely uncorrelated an@) has the W. = 16.5 = 0.2 [1,11,13,17]. We have found thal-
Poissonian formP(s) = exp(—s). This is because two though the level statistics at the transition is independent
levels close in energy are distant in space so that their wawef the size of the system, it depends on the boundary con-
functions do not overlap. ditions Our main result is shown in Fig. 1, where we

It has been found that the Anderson metal-insulatohave plotted the spacing distribution for four types of BCs:
transition in three dimensions is characterized by a thirda) periodic in the three directions (the situation studied by
distribution [1] which has the remarkable property of previous authors and that we will refer to@s 1), (b) pe-
being universal, i.e., it is independent of the size, whereagodic in two directions and “hard wall” (HW) (Dirichlet)
it is size dependent in the localized and metallic regimesin the third(110), (c) periodic in one direction and HW in
The transition is thus described as an unstable fixed pointhe two otherg100), (d) HW in the three direction§00).
in the sense that slightly above the transitioi & W,.,  All of these distributions are “universal” in the sense that
where W is the disorder strength ani. is the critical they are size independent. The critical point depends at
disorder) the distribution tends to a Poissonian limit whenmost very weakly on the choice of the BCs. It seems
L — =, while slightly below the transitonW < W,), to shift slightly to smallerW when the number of HW
it tends to the Wigner-Dyson (WD) distribution. This boundaries is increased. Using a standard scaling analy-
third universal distribution has been extensively studiedis of (s?) and ng(s)ds, we found W, = 16.0 = 0.5
by several groups who confirmed these results, for for the (000) geometry. However, within the range of
ranging from6 to 100 [10-16]. Up to now, the form sizes studiedI{ = 12,...,22), the difference between the
of the distribution is still unexplained. P(s) at W = 16.0 and atW = 16.5 is negligible com-

P(s) carries information on the short range part ofpared tothe remaining statistical fluctuations of the spacing
the spectral correlations. Other characterizations are thdistribution.
two-level correlation function (TLCF) of the density of In Fig. 2 we have plotted the second moment of the
state (e): K(s) = {p(e + s)p(€))/{p(e))> — landthe level spacings?) as a function of the size for the different
so-called number variancB*(E) = (N*(E)) — (N(E))? BCs. This plot shows that the distributions are size
which measures the fluctuation of the number of levelsndependent and that they do not converge to a single one
N(E) in aband of widthE. E isin units ofA. Itisrelated in the large size limit.
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measures the sensitivity of energy levels to a change of the
BCs, the simple fact that it is nonzero shows that the spec-
tral correlations can be, at the same time, size independent
and sensitive to the BCs. This universal sensitivity to the
BC has already been discussed in the cageabdic BCs,
where one or several Aharonov-Bohm (AB) fluxes were
applied [20,21]. However in that case, the symmetry—
time reversal invariance—was, at the same time, broken
by the fluxes, such that it is not surprising that the statis-
tics is changed.

The distribution found by other authors with periodic
BCs is the most rigid of the four distributions that we have
studied. When periodic BCs are relaxed and replaced by

) . ) - ; hard wall BCs, the distribution becomes closer to the Pois-
0.0 1.0 2.0 3.0 son distribution, with a short range repulsion which is char-
acterized by a larger slope Bf(s). The slopeP’(0) varies

by more than a factor of 3 fror.14 [1] for the BC(111)
FIG. 1. DistributionP(s) at the metal-insulator transition with {3 ¢ 80 for the BC(000) (see Table I).

fgug;jllffge?}oty%esl8(1;_b;nudnga%gorgg{ﬁgitﬁoeggn\?v?tﬁz tzegtext: It is useful to stress that, in the metallic regime itself,
to L = 14 are shown. The Wigner-Dyson result (continuousthere are deviations to the WD distribution which depend

line) is also plotted. In the inset the tails &fs) are shown onthe BCs. These deviations are related to a contribution
for L = 10 and compared with the semi-Poisson distribution, of the diffusive modes [9]. At smak, the slope ofP(s)
Eqg. (4) (dashed line). is given by

08 r

P(s)

P(s) = ﬂ:(l + 773622>s, @3]

It may appeaa priori surprising that the distribution is, where the coefficient describes the diffusive motion and
atthe same time, size independent and sensitive to the BGs. given by
To clarify this point, it is instructive to recall the behavior ! |
of the typical dimensionless curvatuge = {|c|)/A of a=—7 Z — - 3
the energy levels when an infinitesimal flux is introduced L™ i% @)

in the cylinder geometry. In the metallic regime;(L)  For an isolated system, the diffusion modes are quantized
increases linearly with the size and it decreases exponegy the BCs. In a direction where the boundaries are hard

tially in the localized regime. At the transition, the cur- walls, ¢ = n#/L with n = 0,1,2,3,.... In a direction
vatureg,(L) = g, is size independent [18,19]. Singe  \where the boundaries are periodig,= 2nm/L with
n=0,*1*2 *3,.... Ind = 3, one findsz;;; = 1.03,

ape = 2.15, ajgo = 3.39, and agoo = 5.13.  So, in a

metal, the slope aoP(s) depends on the BC. However, the
e corrections are of ordet/g? and decrease with the size
o o sinceg(L) ~ L, and they vanish for the infinite system.
160 2 J At the transitiong = g* is size independent and one may
expect that the correction t®(s) still depends on the

TABLE |. Numerical results for various measures of
spectral correlations compared with the SRPM. The rela-
1.50 - ° P tive errors (standard deviations from six system sizes,
° © L = 12,14,16,18,20,22; 500 to 33 disorder realizations) for

B are always less than 10% and fdrare less than 1%.

Wigner 111 110 100 000 SRPM Poisson

A A A A
PP - P(0) = — 165 214 301 437 680 4 =

12 14 16 18 20 22 (s?)
L

<S>

3

‘=127 141° 148 155 162 2

A& o

aThis is the value deduced from the Wigner surmise.
FIG. 2. (s?) versus linear sizd. for different BCs (symbols PSee also Ref. [1].
as in Fig. 1) forw = 16.5. ‘See also Ref. [14].
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BC through the quantization of the anomalous diffusionBCs than by a simple addition of an AB flux or even a
modes. This correction can also be simply calculated fomagnetic field [20].
an anisotropic system. It depends on the shape of the We have also investigated random boundary conditions,
sample. This certainly means that the spectral correlationsith random hopping terms; = ¢;; connecting opposite
at the transition are also shape dependent [22]. sides of the sample. Drawing thg for each disorder
The distributions we have found bear an interestingealization independently from a box distribution centered
similarity to another recently studied distribution [23]. A around zero and with width-, we found a continuous
remarkable and simple spectral sequence which is intefamily of universal critical ensembles which are, for finite
mediate between the WD and the Poisson distributions is, distinct from the ones with “deterministic” boundary
obtained by taking the middle of a Poissonian sequenceonditions.
This new sequence has been baptized “semi-Poisson” We now turn to the number variance. A linear behavior
[23]. The corresponding(s) is given by [23,24] at largeE, 3*(E)/E — y, defines the level compressibil-
P(s) = 4se % @) ity x, which is also related to the— 0 dependence of
’ the form factorkK (), the Fourier transform oK (s). One
It has been shown that the equilibrium distribution ofhasy = .. K(s)ds = K(0). This meangy = 1 for the
charges in a Coulomb gas with logarithmic interactionPoisson and semi-Poisson sequengess 0 for the WD
only betweennearest neighborss also described by correlations, angy = %for the SRPM.
Eg. (4). The TLCF an&?(E) for this model [referred to In Fig. 4, we have plotte®?(E)/E for the various
later as short range plasma model (SRPM)] are, howeveBCs. It is seen that, like faP(s), the rigidity depends on
different from those for the semi-Poisson sequence. Wehe BCs for small energy ranges. The rigidity is weaker
shall return to this point later. for nonperiodic BCs. However, wheB increases, the
In the inset of Fig. 3 we have plotted the arithmeticdifferent rigidities seem to converge towards the same
average of the four distributions. Quite amazingly, it isvalue (see inset of Fig. 4). We fing = 0.27 = 0.02,
very close to the semi-Poisson distribution. The averagé agreement with previous authors [10,25]. Within error
of the slope at small separation calculated with the foubars, this asymptotic value does not depend on the BCs.
BCs is4.08 = 0.4 instead of four for the semi-Poisson.  P(s) and y carry information on different time scales
As another characteristic @f(s), the second momext?) in the problem. Remember that the metallic spectrum is
is shown in Table | for the various BCs. The averagecharacterized by two characteristic time scales, the Thou-
qver the different BCs is found to be51 = 0.01. Itis less timerp and the Heisenberg timey = h/A, with
5 for the semi—Poisson. The tails B{s) have also been r4/7p =27E./A > 1. At the transition, these two
considerably studied [1,3,4,12,14,16]. The inset of Fig. ltimes are of the same order. Consequently, correlation
shows the tails for the four BCs. They clearly differ by functions such a®(s) which probe correlations at energy
the rapidity of their decay, the usual periodic BCs givingscales of the order od, i.e., time scales of the order of
rise to the fastest decay. It is interesting to notice that; = 7, probe the sensitivity to the boundary conditions
the behavior at large is much more affected by HW
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